Royal Society Releases Low-Carbon Hydrogen Briefing

On February 8, the Royal Society released a policy briefing entitled “Options for producing low-carbon hydrogen at scale.”  The briefing evaluates the technical and economic aspects of hydrogen production methods and concludes that it is indeed feasible to produce low-carbon hydrogen at scale.  Part of that feasibility, the briefing says, could be based on the use of ammonia as an expedient for hydrogen transport and storage.

Read more ...

Pilot project: an ammonia tanker fueled by its own cargo

Last month, an important new consortium in the Netherlands announced its intention to research and demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fuelled by its own cargo." This two-year project will begin with theoretical and laboratory studies, and it will conclude with a pilot-scale demonstration of zero-emission marine propulsion using ammonia fuel in either an internal combustion engine or a fuel cell.

Read more ...

Renewable ammonia demonstration plant announced in South Australia

This week, the government of South Australia announced a "globally-­significant demonstrator project," to be built by the hydrogen infrastructure company Hydrogen Utility (H2U). The renewable hydrogen power plant will cost AUD$117.5 million ($95 million USD), and will be built by ThyssenKrupp Industrial Solutions with construction beginning in 2019.

The plant will comprise a 15 MW electrolyzer system, to produce the hydrogen, and two technologies for converting the hydrogen back into electricity: a 10MW gas turbine and 5MW fuel cell. The plant will also include a small but significant ammonia plant, making it "among the first ever commercial facilities to produce distributed ammonia from intermittent renewable resources."

Read more ...

Japan, Saudi Arabia Explore Trade in Hydrogen, Ammonia

Japan and Saudi Arabia are together exploring the possibility of extracting hydrogen from Saudi crude oil so that it can be transported to Japan in the form of ammonia.

According to a synopsis of the planned effort, “one option for Japan’s material contribution to reducing greenhouse gas emissions [would be] a supply chain for carbon-free hydrogen and ammonia produced through CCS from Saudi Arabian fossil fuels.”  The synopsis emerged from a September 2017 workshop sponsored by Saudi Aramco and the Institute of Energy Economics, Japan (IEEJ). 

Read more ...

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Read more ...

IHI Commits to Ammonia Energy. Big Time.

During his presentation at the November 2017 NH3 Energy + Topical Conference, Shogo Onishi of IHI Corporation described the progress made by IHI and Tohoku University in limiting NOx emissions from ammonia-fired gas turbines (AGTs).  Regular attendees of the annual NH3 Fuel Conference identify IHI with its work on AGTs since the company also addressed this topic at the 2016 and 2015 events.  However, a scan of published materials shows that AGTs are just one aspect of IHI’s activity in the ammonia energy arena.  In fact, IHI is also looking at the near-term commercialization of technologies in ammonia-coal co-firing in steam boilers and direct ammonia fuel cells.  This level and breadth of commitment to ammonia energy is unique among global capital goods producers.

Read more ...

Process Superstructures and the Production of Cost-Advantaged Ammonia

At the 2017 NH3 Energy+ Conference, graduate student Doga Demirhan reported on an ongoing investigation at the Energy Institute at Texas A&M University. The work involved evaluation of options for an ammonia production system and concluded that biomass could be an economically viable feedstock under current, real-world conditions. This is a notable outcome. Just as notable is how it was reached.

Read more ...

Ammonia from Offshore Wind: a techno-economic review on the US East Coast

A new study examines the technologies needed to produce renewable ammonia from offshore wind in the US, and analyzes the lifetime economics of such an operation.

This is the latest in a years-long series of papers by a team of researchers from the University of Massachusetts, Amherst, and Massachusetts Institute of Technology (MIT). And it is by far the closest they have come to establishing sustainable ammonia as being cost-competitive with fossil ammonia.

Read more ...

H2@Scale in California: A Role for Ammonia?

The U.S. Department of Energy H2@Scale program’s November 2017 workshop in California included mention of ammonia as a constituent of a future hydrogen economy. It also highlighted the relevance ammonia energy could have in California.

California stands out globally as a large economy that is strongly committed to development of a hydrogen economy. The state’s strategy for hydrogen-powered transportation involves reducing the production cost of renewable hydrogen and the capital and operating costs of hydrogen fueling stations. It does not explicitly address the cost of intermediate hydrogen logistics.

The question of cost is of utmost importance because California has so far put $120 million of public funds into hydrogen fueling stations and intends to invest an additional $20 million per year through 2022. The state’s aspiration is to move to a point where hydrogen that is used as a motor fuel is free of public subsidy. So it clearly behooves the state to investigate how ammonia could be used as a cost-reducing energy carrier.

Toyota is active in California’s hydrogen movement and has announced plans to build a renewable hydrogen plant that will use cow manure as a feedstock. A project with a different conception, one that draws upon the solar and wind resources of the Mojave Desert to produce renewable hydrogen and logistically advantaged ammonia, would align better with the state’s sustainability objectives.

Read more ...

The capital intensity of small-scale ammonia plants

The list of investment drivers for building new ammonia plants in the US over the last few years was short, beginning and ending with cheap natural gas. Markets change, however, and the investment drivers for the next generation of new ammonia plants might include low cost electrolyzers, low cost renewable power, carbon taxes, and global demand for ammonia as a carbon-free energy vector.

For this to make sense, however, ammonia needs to be produced without fossil fuel inputs. This is perfectly possible using Haber-Bosch technology with electrolyzers, but today's wind and solar power plants exist on a smaller scale than could support a standard (very big) Haber-Bosch plant. So, to produce renewable ammonia, small-scale ammonia production is essential.

This time series chart shows the capital intensity of today’s ammonia plants. Together, the data illustrate competitive advantages of alternative investment strategies, and demonstrate a shift away from the prior trend toward (and received wisdom of) monolithic mega-plants that rely on a natural gas feedstock.

Read more ...