Category: Commercial Technologies

International Chamber of Shipping endorses “Reducing CO2 Emissions to Zero,” with ammonia as a maritime fuel

The International Chamber of Shipping has published a short but powerful report to "endorse" the International Maritime Organization's Initial Strategy on Reduction of GHG Emissions from Ships, adopted in April 2018. The ICS report calls the IMO's Initial GHG Strategy "a historic agreement which the global industry, as represented by ICS, fully supports," and discusses four fuel technologies that could deliver the IMO's targets: batteries, hydrogen, ammonia, and nuclear.

The ICS report also demonstrates four realities, which apply, perhaps uniquely, to the maritime sector. First, corporations are driving change, in advance of government legislation. Second, these corporations are looking for more than incremental reductions in emissions and instead targeting total sectoral decarbonization with the ambition "to achieve zero CO2 emissions as soon as the development of new fuels and propulsion systems will allow." Third, they realize that LNG and other low-carbon fuels cannot meet these targets: "the ultimate goal of zero emissions can only be delivered with genuine zero CO2 fuels that are both environmentally sustainable and economically viable." Fourth, they recognize that, because ships are long-lived assets, the need to invest in zero CO2 fuel technologies is urgent and immediate.

Read more ...

GenCell launches commercial alkaline fuel cell using cracked ammonia fuel

GenCell Energy, the Israeli fuel cell manufacturer, has made two major announcements in the last month. In June, it unveiled its ammonia-fueled alkaline fuel cell system. In July, it announced its first commercial customer.

Its A5 Off-Grid Power Solution is a "nano power plant that operates fully independent of the grid." The first phase of product trials, using ammonia as a fuel to provide uninterruptible power to cell phone masts, will begin in Kenya by the end of this year, and "product roll-out" is expected in the second half of 2019.

Read more ...

Nel Stakes a Claim on Another Key Frontier of Hydrogen Implementation

On June 28, Norwegian hydrogen company Nel ASA issued a press release announcing that the company will supply “448 electrolyzers and associated fueling equipment to Nikola Motor Company as part of Nikola’s development of a hydrogen station infrastructure in the U.S. for truck and passenger vehicles.”  The Nikola-Nel arrangement is a globally significant step in the process of implementing a full-scale hydrogen energy economy.  And although its approach for supplying green energy to hydrogen fueling stations does not involve ammonia, it seems likely it will ultimately help make the case for ammonia as an economically advantaged option.

Read more ...

Green ammonia demonstration plants now operational, in Oxford and Fukushima

Two new pilot projects for producing "green ammonia" from renewable electricity are now up and running and successfully producing ammonia.

In April 2018, the Ammonia Manufacturing Pilot Plant for Renewable Energy started up at the Fukushima Renewable Energy Institute - AIST (FREA) in Japan. Earlier this week, Siemens launched operations at its Green Ammonia Demonstrator, at the Rutherford Appleton Laboratory outside Oxford in the UK.

The commercial product coming out of these plants is not ammonia, however, it is knowledge.

While both the FREA and Siemens plants are of similar scale, with respective ammonia capacities of 20 and 30 kg per day, they have very different objectives. At FREA, the pilot project supports catalyst development with the goal of enabling efficient low-pressure, low-temperature ammonia synthesis. At Siemens, the pilot will provide insights into the business case for ammonia as a market-flexible energy storage vector.

Read more ...

Sawafuji Moves toward Commercialization of NH3-to-H2 System

On May 28 Sawafuji Electric Company issued a press release detailing advances made over the last year on the ammonia-to-hydrogen conversion technology it has been jointly developing with Gifu University.  The main area of progress is the rate of hydrogen generation, but the key takeaway from the announcement is that Sawafuji has set a schedule that culminates in product commercialization in 2020.

Read more ...

Small-scale ammonia production is the next big thing

Over the last few years, world-scale ammonia plants have been built, restarted, and relocated across the US. The last of these mega-projects began operations at Freeport in Texas last month. No more new ammonia plants are currently under construction in the US, and the received industry wisdom is that no more will begin construction.

However, project developers and ammonia start-ups did not get this memo. With low natural gas prices persisting, they have not stopped announcing plans to build new plants. The difference is that the next tranche of new ammonia plants breaking ground will not be world-scale but regional-scale, with production capacities of perhaps only one tenth the industry standard. Despite using fossil feedstocks, these plants will set new efficiency and emissions standards for small-scale ammonia plants, and demonstrate novel business models that will profoundly alter the future industry landscape for sustainable ammonia technologies.

Read more ...

Yara and BASF open their brand-new, world-scale plant, producing low-carbon ammonia

The newest ammonia plant on the planet has opened in Freeport, Texas.

A joint venture between Yara and BASF, this world-scale ammonia plant uses no fossil fuel feedstock. Instead, it will produce 750,000 metric tons of ammonia per year using hydrogen and nitrogen delivered directly by pipeline. The plant's hydrogen contract is structured so that the primary supply is byproduct hydrogen, rather than hydrogen produced from fossil fuels, and therefore the Freeport plant can claim that its ammonia has a significantly reduced carbon footprint.

This new ammonia plant demonstrates three truths. First, low-carbon merchant ammonia is available for purchase in industrial quantities today: this is not just technically feasible but also economically competitive. Second, carbon intensity is measured in shades of grey, not black and white. Ammonia is not necessarily carbon-free or carbon-full, but it has a carbon intensity that can quantified and, in a carbon-constrained economy, less carbon content equates to higher premium pricing. Third, the ammonia industry must improve its carbon footprinting before it can hope to be rewarded for producing green ammonia.

Read more ...

IHI First to Reach 20% Ammonia-Coal Co-Firing Milestone

The Japanese manufacturer IHI Corporation announced on March 28 that it had successfully demonstrated the co-firing of ammonia and coal in a fuel mix composed of 20% ammonia. Ammonia-coal co-firing had previously been demonstrated by Chugoku Electric in a fuel mix composed of just 0.6-0.8% ammonia.

IHI says its ultimate goal is to “construct a value chain that connects the production and use of ammonia, using combustion technology of gas turbines and coal-fired boilers, using ammonia as fuel.”

Read more ...

Joyn Bio: microbial engineering for sustainable nitrogen

Six months ago, in September 2017, I reported a $100 million joint venture announcement between Bayer and Ginkgo Bioworks that aimed to engineer nitrogen-fixing microbes, which could be put into seed coatings and provide nutrients to non-legume crops. Now, the joint venture has been named, and Joyn Bio is staffing up. For the ammonia industry, this represents potential demand destruction at a significant scale in the coming decades.

Read more ...

Decarbonising Maritime Transport: OECD report sees ammonia fuel enabling carbon-free shipping by 2035

Twelve months ago, I wrote here that "the shipping industry is beginning to evaluate ammonia as a potential 'bunker fuel,' a carbon-free alternative to the heavy fuel oil (HFO) used in maritime transport." Around that time, I described the obstacle to adoption of ammonia fuel as an information gap, rather than a technology gap, because no new technology was required: the industry simply did not know about ammonia. This information gap had allowed the industry to believe that "CO2 reduction objectives will only be achievable with alternative marine fuels which do not yet exist." I'm glad to announce that this information gap is closing, and fast.

According to a report published last week by the International Transport Forum, the OECD's "think tank for transport policy," the use of "currently known technologies could make it possible to almost completely decarbonise maritime shipping by 2035." This conclusion requires the adoption of ammonia as a zero-carbon fuel.

Read more ...