Category: Commercial Technologies

Maritime Industry Targets Ammonia Fuel to Decarbonize Shipping

In the last 12 months ...
The International Maritime Organization issued its Initial GHG Strategy, committing the global shipping industry to emission reductions that cannot be achieved with carbon-based fuels. This single action is the regulatory trigger that unleashes a three-decade transition to carbon-free liquid fuels like ammonia. The target date for this 50% reduction in emissions is 2050 but, given the long economic life of ocean vessels, the transition must begin immediately.

Read more ...

Ammonia for Fuel Cells: AFC, SOFC, and PEM

In the last 12 months ...
IHI Corporation tested its 1 kW ammonia-fueled solid oxide fuel cell (SOFC) in Japan; Project Alkammonia concluded its work on cracked-ammonia-fed alkaline fuel cells (AFC) in the EU; the University of Delaware's project for low-temperature direct ammonia fuel cells (DAFC) continues with funding from the US Department of Energy's ARPA-E; and, in Israel, GenCell launched its commercial 4 kW ammonia-fed AFC with field demonstrations at up to 800 locations across Kenya.

Read more ...

Green Ammonia Plants, Commercially Available Today

In the last 12 months ...
Green ammonia pilot plants began operations in the UK and Japan, and new demonstration plants were announced in Australia, Denmark, Morocco, and the Netherlands (more, yet to be announced, are in development). Fertilizer company CEOs spoke about how green ammonia fits their corporate strategy. And all four of the global licensors of ammonia technology made it abundantly clear that they are ready and willing to build your green ammonia plant, today.

Read more ...

This Week in Hydrogen

September 10–14 gave us five remarkable events both evidencing and advancing the rise of hydrogen in transportation and energy. Any one of them would have made it a significant week; together they make a sea change.

Read more ...

Small-scale ammonia: where the economics work and the technology is ready

The movement toward small-scale ammonia is accelerating for two reasons. First, small ammonia plants are flexible. And, second, small ammonia plants are flexible.

They are feedstock-flexible, meaning that they can use the small quantities of low-value or stranded resources that are widely available at a local scale. This includes flared natural gas, landfill gas, or wind power.

And they are market-flexible, meaning that they can serve various local needs, selling products like fertilizer, energy storage, or fuel; or services like resource independence, price stability, or supply chain robustness.

While the scale of these plants is small, the impact of this technology is big. As industry-insider publication Nitrogen+Syngas explained in its last issue, "as ammonia production moves toward more sustainable and renewable feedstocks the ammonia market is facing a potentially radical change."

Read more ...

NH3 Energy+ Topical Conference schedule published

This week, the NH3 Fuel Association published the full technical schedule for the NH3 Energy+ Topical Conference, which will be hosted within the AIChE Annual Meeting, on October 31, 2018, in Pittsburgh, PA.

Featuring more than 50 oral presentations, this year's event will be our busiest yet. Speakers and co-authors from 16 countries, and 18 states across the USA, will present research and development from 68 separate companies and research institutions.

Registration for the AIChE Annual Meeting is now open, with reduced rates until September 17. Full details are at the NH3 Fuel Association website.

Read more ...

McKinsey report on industrial decarbonization examines pathways to green ammonia

McKinsey & Company, the global consulting firm, recently published a report that analyzes the "Decarbonization of industrial sectors," with a focus on the four heaviest emitters: cement, steel, ammonia, and ethylene production.

"We conclude that decarbonizing industry is technically possible ... We also identify the drivers of costs associated with decarbonization and the impact it will have on the broader energy system." Of course, "technical and economical hurdles arise," but the report provides valuable analysis of the economic levers that will be required.

Read more ...

ThyssenKrupp’s “green hydrogen and renewable ammonia value chain”

In June, ThyssenKrupp announced the launch of its technology for "advanced water electrolysis," which produces carbon-free hydrogen from renewable electricity and water. This "technology enables economical industrial-scale hydrogen plants for energy storage and the production of green chemicals."

Two weeks later, in early July, ThyssenKrupp announced that it was moving forward with a demonstration plant in Port Lincoln, South Australia, which had been proposed earlier this year. This will be "one of the first ever commercial plants to produce CO2-free 'green' ammonia from intermittent renewable resources."

The German conglomerate is one of the four major ammonia technology licensors, so its actions in the sustainable ammonia space are globally significant.

Read more ...

International Chamber of Shipping endorses “Reducing CO2 Emissions to Zero,” with ammonia as a maritime fuel

The International Chamber of Shipping has published a short but powerful report to "endorse" the International Maritime Organization's Initial Strategy on Reduction of GHG Emissions from Ships, adopted in April 2018. The ICS report calls the IMO's Initial GHG Strategy "a historic agreement which the global industry, as represented by ICS, fully supports," and discusses four fuel technologies that could deliver the IMO's targets: batteries, hydrogen, ammonia, and nuclear.

The ICS report also demonstrates four realities, which apply, perhaps uniquely, to the maritime sector. First, corporations are driving change, in advance of government legislation. Second, these corporations are looking for more than incremental reductions in emissions and instead targeting total sectoral decarbonization with the ambition "to achieve zero CO2 emissions as soon as the development of new fuels and propulsion systems will allow." Third, they realize that LNG and other low-carbon fuels cannot meet these targets: "the ultimate goal of zero emissions can only be delivered with genuine zero CO2 fuels that are both environmentally sustainable and economically viable." Fourth, they recognize that, because ships are long-lived assets, the need to invest in zero CO2 fuel technologies is urgent and immediate.

Read more ...

GenCell launches commercial alkaline fuel cell using cracked ammonia fuel

GenCell Energy, the Israeli fuel cell manufacturer, has made two major announcements in the last month. In June, it unveiled its ammonia-fueled alkaline fuel cell system. In July, it announced its first commercial customer.

Its A5 Off-Grid Power Solution is a "nano power plant that operates fully independent of the grid." The first phase of product trials, using ammonia as a fuel to provide uninterruptible power to cell phone masts, will begin in Kenya by the end of this year, and "product roll-out" is expected in the second half of 2019.

Read more ...