Category: Denmark

Sustainable ammonia synthesis: SUNCAT’s lithium-cycling strategy

New research coming out of Stanford University suggests a fascinating new direction for electrochemical ammonia synthesis technology development.

The US-Danish team of scientists at SUNCAT, tasked with finding new catalysts for electrochemical ammonia production, saw that 'selectivity' posed a tremendous challenge - in other words, most of the energy used by renewable ammonia production systems went into making hydrogen instead of making ammonia.

The new SUNCAT solution does not overcome this selectivity challenge. It doesn't even try. Instead, these researchers have avoided the problem completely.

Read more ...

Bunker Ammonia: momentum toward a “sus­tainable and future-proof” maritime fuel

The maritime industry is beginning to show significant interest in using ammonia as a "bunker fuel," a sustainable alternative to the highly polluting heavy fuel oil (HFO) currently used in ships across the world.

In recent months, a firm of naval architects and a new maritime think tank have both been evaluating ammonia as a fuel. This includes a road map for future research, and collaborations for a demonstration project that will allow them to design and build a freight ship "Powered by NH3."

Read more ...

International R&D on sustainable ammonia synthesis technologies

Over the last few weeks, I've written extensively about sustainable ammonia synthesis projects funded by the US Department of Energy (DOE). While these projects are important, the US has no monopoly on technology development. Indeed, given the current uncertainty regarding energy policy under the Trump administration, the US may be at risk of stepping away from its assumed role as an industry leader in this area.

This article introduces seven international projects, representing research coming out of eight countries spread across four continents. These projects span the breadth of next-generation ammonia synthesis research, from nanotechnology and electrocatalysis to plasmas and ionic liquids.

Read more ...