Category: Netherlands

International Chamber of Shipping endorses “Reducing CO2 Emissions to Zero,” with ammonia as a maritime fuel

The International Chamber of Shipping has published a short but powerful report to "endorse" the International Maritime Organization's Initial Strategy on Reduction of GHG Emissions from Ships, adopted in April 2018. The ICS report calls the IMO's Initial GHG Strategy "a historic agreement which the global industry, as represented by ICS, fully supports," and discusses four fuel technologies that could deliver the IMO's targets: batteries, hydrogen, ammonia, and nuclear.

The ICS report also demonstrates four realities, which apply, perhaps uniquely, to the maritime sector. First, corporations are driving change, in advance of government legislation. Second, these corporations are looking for more than incremental reductions in emissions and instead targeting total sectoral decarbonization with the ambition "to achieve zero CO2 emissions as soon as the development of new fuels and propulsion systems will allow." Third, they realize that LNG and other low-carbon fuels cannot meet these targets: "the ultimate goal of zero emissions can only be delivered with genuine zero CO2 fuels that are both environmentally sustainable and economically viable." Fourth, they recognize that, because ships are long-lived assets, the need to invest in zero CO2 fuel technologies is urgent and immediate.

Read more ...

Battolyser Attracts Grant Funding, Corporate Support

The kernel of the story is this: Battolyser B.V. is taking a step forward with the battolyser, its eponymous energy storage technology.  On June 12, Battolyser’s joint venture partners Delft University of Technology (TU Delft) and Proton Ventures announced that they had secured a €480,000 grant from Waddenfonds, a Dutch public-sector funding agency, to build a 15 kW/60 kWh version of the battolyser.  The installation will take place at Nuon’s Magnum generating station at Eemshaven in the Netherlands.  The move makes tangible the vision of the battolyser as an integral part of an energy supply system with a robust quota of renewably generated electricity.

The battolyser is a battery that stores electricity in the conventional galvanic manner until it is fully charged.  At that point, the device uses any additional electricity supplied for the electrolysis of water and evolution of hydrogen.  If the device is integrated with hydrogen buffer storage and an ammonia production train, the result will be a versatile and highly scalable energy storage system that can provide highly responsive grid support on all time scales from seconds to months.  (Ammonia Energy last posted on the battolyser on March 1, 2018.)

Read more ...

A Roadmap for The Green Hydrogen Economy in the Northern Netherlands

A number of green ammonia projects have been announced in the Netherlands since the influential Power-to-Ammonia feasibility study was published in early 2017. Perhaps the most important publication since then, however, is the roadmap published by The Northern Netherlands Innovation Board, The Green Hydrogen Economy in the Northern Netherlands. Its scope, including sections written by consultants from ING, Rabobank, and Accenture, goes well beyond the standard techno-economic analysis and presents a cogent plan for coordinated development of "production projects, markets, infrastructure and societal issues."

Green ammonia features heavily throughout the roadmap, which calls for the construction of 300,000 tons per year of renewable ammonia production in Delfzijl by 2024, as well as for large-scale imports of green ammonia, starting in 2021, which would provide low-cost delivery and storage of carbon-free fuel, cracked into hydrogen, for the Magnum power plant.

Read more ...

All together now: every major ammonia technology licensor is working on renewable ammonia

The second annual Power to Ammonia conference, which took place earlier this month in Rotterdam, was a tremendous success. It was again hosted by Proton Ventures, the Dutch engineering firm and mini-ammonia-plant pioneer, and had roughly twice as many attendees as last year with the same extremely high quality of presentations (it is always an honor for me to speak alongside the technical wizards and economic innovators who represent the world of ammonia energy).

However, for me, the most exciting part of this year's event was the fact that, for the first time at an ammonia energy conference, all four of the major ammonia technology licensors were represented. With Casale, Haldor Topsoe, ThyssenKrupp, and KBR all developing designs for integration of their ammonia synthesis technologies with renewable powered electrolyzers, green ammonia is now clearly established as a commercial prospect.

Read more ...

Ammonia-to-Hydrogen Seen for Electricity Generation

Approximately 40% of the world’s energy budget is consumed in the generation of electricity.  This is by far the largest use of primary energy across major energy-consuming sectors (transportation, industry, etc.).  What role ammonia will play in the electricity sector is therefore a question of considerable importance for the sustainable energy system of the future.  One concept currently on the table is power-to-ammonia as a means of electricity storage, whereby electricity is used to produce hydrogen and the hydrogen is reacted with nitrogen to produce ammonia.  The other, mirror-image, concept is to use ammonia, or hydrogen derived from ammonia, as a fuel that can be turned into electricity.

This “back-end” use case is the focus of recent announcements from Mitsubishi Hitachi Power Systems (MHPS).  According to an April 5 story in the Nikkei Sangyo, MHPS plans to put a “hydrogen-dedicated gas turbine . . . into practical use by 2030.”  The company also stated that it has “started developing technology to extract hydrogen from ammonia,” citing ammonia’s ease “to store and transport.”

Read more ...

Battolyser B.V. Formed in the Netherlands

Proton Ventures and Delft University of Technology (TU Delft), both of the Netherlands, announced in early February the formation of a new company, Battolyser B.V.  The company’s initial goal is to build and demonstrate a pilot version of the eponymous technology that stores electricity and produces hydrogen.  Hans Vrijenhoef, who will direct the new company, indicated that a fully realized system would include an ammonia production train so that the hydrogen could be stored and transported at low cost.  Vrijenhoef is already the Director of Proton Ventures B.V., a member of the NH3 Fuel Association’s Global Federation Advisory Board, and the originator of the NH3 Event power-to-ammonia conference.

Read more ...

Pilot project: an ammonia tanker fueled by its own cargo

Last month, an important new consortium in the Netherlands announced its intention to research and demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fuelled by its own cargo." This two-year project will begin with theoretical and laboratory studies, and it will conclude with a pilot-scale demonstration of zero-emission marine propulsion using ammonia fuel in either an internal combustion engine or a fuel cell.

Read more ...

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Read more ...

The capital intensity of small-scale ammonia plants

The list of investment drivers for building new ammonia plants in the US over the last few years was short, beginning and ending with cheap natural gas. Markets change, however, and the investment drivers for the next generation of new ammonia plants might include low cost electrolyzers, low cost renewable power, carbon taxes, and global demand for ammonia as a carbon-free energy vector.

For this to make sense, however, ammonia needs to be produced without fossil fuel inputs. This is perfectly possible using Haber-Bosch technology with electrolyzers, but today's wind and solar power plants exist on a smaller scale than could support a standard (very big) Haber-Bosch plant. So, to produce renewable ammonia, small-scale ammonia production is essential.

This time series chart shows the capital intensity of today’s ammonia plants. Together, the data illustrate competitive advantages of alternative investment strategies, and demonstrate a shift away from the prior trend toward (and received wisdom of) monolithic mega-plants that rely on a natural gas feedstock.

Read more ...

Green ammonia demonstration plant in The Netherlands

Last month, a heavyweight consortium of local and global companies announced plans to collaborate on a project to design, build, operate, and evaluate a demonstration plant to produce "green ammonia" from water, air, and renewable energy in The Netherlands.

This is one practical outcome of last year's Power-to-Ammonia study, which examined the economic and technical feasibility of using tidal power off the island of Goeree-Overflakkee in Zuid-Holland to power a 25 MWe electrolyzer unit, and feed renewable hydrogen to a 20,000 ton per year green ammonia plant.

This new demonstration plant phase of the project will still be led by the original developer, Dutch mini-ammonia plant developer Proton Ventures. However, its partners in the venture now include Yara and Siemens, as well as speciality fertilizer producer Van Iperen, and local sustainable agricultural producer, the Van Peperstraten Groep.

Read more ...