Tag: Hydrogen Carrier

On the Ground in Australia: Two Key Mentions for Ammonia Energy

Ammonia energy is about the development of technology, but it is also about the mobilization of investment.  To be precise, it is about how evolving technology can attract investment and how investment enables technological evolution.  A dynamic of this nature is emerging in Australia, where recent citations of ammonia energy in two mainstream venues signal its arrival as a legitimate target for public- and private-sector investment.

Read more ...

On the Ground in Japan: Mid-Term Prospects for the Hydrogen Society

Recent “On the Ground in Japan” posts have considered the path forward for Japan’s “Hydrogen Society.”  Two weeks ago, a post entitled “FCV Uptake and Hydrogen Fueling Stations,” pointed to a lack of marketplace momentum for the products that are supposed to drive the hydrogen society forward in the near term.  The uptake of fuel-cell vehicles is off to a very slow start and the construction of hydrogen fueling stations is “not proceeding.”
The same day the post appeared, the Japanese market research firm Fuji Keizai announced the release of a report projecting robust growth for the country’s hydrogen economy.  As reported by the on-line news service Smart Japan, the market for selected hydrogen-related goods will start to hit its stride with the arrival of the Tokyo Olympics in 2020.  At that time, Fuji Keizai projects the market will have a value of approximately ¥700 billion ($6.4 billion).  By 2030, the report says, the market will have a value of ¥5,903 billion ($54 billion). This is good news for hydrogen proponents but its import for ammonia energy is not clear.

Read more ...

Bunker Ammonia: momentum toward a “sus­tainable and future-proof” maritime fuel

The maritime industry is beginning to show significant interest in using ammonia as a "bunker fuel," a sustainable alternative to the highly polluting heavy fuel oil (HFO) currently used in ships across the world.

In recent months, a firm of naval architects and a new maritime think tank have both been evaluating ammonia as a fuel. This includes a road map for future research, and collaborations for a demonstration project that will allow them to design and build a freight ship "Powered by NH3."

Read more ...

Ammonia Energy at the H2@Scale Workshop

“Carbon-free ammonia needs to be a significant contributor to the H2@Scale initiative.” This was one of the “key takeaways” offered by Steve Szymanski, Director of Business Development at the hydrogen generator company Proton On-Site, during his presentation at the H2@Scale Workshop that was held on May 23-24 at the University of Houston in the U.S. By the time Szymanski left the podium, ammonia energy had moved a good distance from the periphery of the H2@Scale conceptual map toward its center.

Read more ...

On the Ground in Japan: FCV Uptake and Hydrogen Fueling Stations

Module four of the ten-module research and development agenda for Japan’s Cross-Ministerial Strategic Innovation Promotion Program -- Energy Carriers is entitled “Basic Technology for Hydrogen Station Utilizing Ammonia.” The rationale for including this technology is that “high purity H2 supply system with low cost hydrogen transportation is a key issue to spread fuel cell vehicles (FCVs).”

A story published last week in the Tokyo Shimbun says that to date FCVs have not spread very far. Among the factors seen as constraints is the cost of hydrogen fueling stations (HFS). The Tokyo Shimbun story states that “according to industry officials, each station that supplies hydrogen to fuel cell vehicles runs about ¥400 million ($3.6 million) in construction costs. In order to achieve profitability, about 1,000 fuel cell vehicles are required as customers per location. Construction is not proceeding.”

So far, the players focused on FCVs do not seem to be looking to ammonia as an expedient that will help reduce the cost of HFS and thereby encourage their construction and by extension the uptake of FCVs. This appears to be a missed opportunity whose benefits may become too compelling to ignore.

Read more ...

CSIRO Membrane: Ammonia to High-Purity Hydrogen

In Australia this week, CSIRO announced funding for the "final stages of development" of its metal membrane technology to produce high-purity hydrogen from ammonia. The two year research project aims to get the technology "ready for commercial deployment," with industrial partners including Toyota and Hyundai.

Read more ...

The Hydrogen Consensus

Let’s say there is such a thing as the “hydrogen consensus.” Most fundamentally, the consensus holds that hydrogen will be at the center of the sustainable energy economy of the future. By definition, hydrogen from fossil fuels will be off the table. Hydrogen from biomass will be on the table but the amount that can be derived sustainably will be limited by finite resources like land and water. This will leave a yawning gap (in the U.S., 60-70% of total energy consumption) that will be filled with the major renewables -- wind, solar, and geothermal -- and nuclear energy.

This may be as far as the consensus goes today, but more detail is now emerging on the global system of production and use that could animate a hydrogen economy.

Read more ...

On the Ground in Japan: LH2 and MCH Hydrogen Fueling Stations

While Japan’s Cross-Ministerial Strategic Innovation Promotion Program (SIP) continues to evaluate liquid hydrogen (LH2), methylcyclohexane (MCH), and ammonia as hydrogen energy carriers, Japanese press reports show that the backers of liquid hydrogen and MCH are building an early lead over ammonia with hydrogen fueling stations based on their favored commodities.

Read more ...

New Technology for Generating Hydrogen from Ammonia

On March 21, Gifu University in Japan announced a breakthrough in technology for generating hydrogen from ammonia. A press release from the Gifu Prefectural Association Press Club stated that Professor Shinji Kambara, Director of the Next Generation Research Center within the Environmental Energy Systems Department at the Gifu University Graduate School of Engineering, has developed a "plasma membrane reactor" that is capable of evolving hydrogen with a purity of 99.999 percent from an ammonia feedstock. This surpasses the 99.97 percent purity announced last July by a research group centered at Hiroshima University with a hydrogen generation device based on a different technology.

Read more ...

Bunker Ammonia: carbon-free liquid fuel for ships

The shipping industry is beginning to evaluate ammonia as a potential "bunker fuel," a carbon-free alternative to the heavy fuel oil (HFO) used in maritime transport.

International trade associations are leading the effort to decarbonize the sector, in alignment with targets set by the Paris Climate Agreement. Their immediate challenge is simple to state but hard to solve: "ambitious CO2 reduction objectives will only be achievable with alternative marine fuels which do not yet exist." In the long-term, however researchers recognize that "fuel cell-powered ships are likely to dominate, drawing their energy from fuels such as hydrogen and ammonia."

Read more ...