Tag: NH3 Cracking

Toyota Supports H2 Society Roll-Out on Its Home Turf; and Sees a Role for NH3

Toyota Motor Corporation announced on April 25 the launch of an effort called the Chita City and Toyota City Renewable Energy-Use Low-Carbon Hydrogen Project.  According to the company’s press release, the project is intended as a step toward “the realization of a hydrogen-based society spanning the entire region through mutual coordination and all-inclusive efforts.” 

For ammonia energy advocates, the announcement had two elements of particular significance. First is the clear indication that Toyota Motor Corporation is embracing ammonia as a hydrogen carrier – although not as a motor fuel.  Second is the project’s stated intention to establish a “system in which Aichi Prefecture certifies low-carbon hydrogen objectively and fairly.”

Read more ...

Ammonia Flash Cracking and Energy Development in Southern Africa

New ammonia production capacity is being built in southern Africa. The outputs will support agricultural development in the region – but could also support development of ammonia as a universal energy commodity. A British start-up company is currently at work to develop a beachhead use case for ammonia energy.

Read more ...

254th ACS Meeting, Energy and Fuels Symposium “The Ammonia Economy” – Oxidation, Catalytic Cracking & Storage

In August of 2017 a symposium on the Ammonia Economy was held in Washington DC as part of the Energy and Fuels Division of the American Chemical Society (ACS) conference. The symposium was devised to explore the latest results from ammonia related research, including but not limited to; advances in the generation of ammonia, advances in the catalytic cracking of ammonia to nitrogen and hydrogen, ammonia storage and utilisation, detectors and sensors for ammonia, ammonia fuel cells and hydrogen from ammonia, ammonia combustion and ammonia safety.

Read more ...

Round-trip Efficiency of Ammonia as a Renewable Energy Transportation Media

A new study has made a major addition to the available literature on the economic benefits of ammonia energy. This latest study, published by researchers from CSIRO in Australia, provides the data needed to define the round-trip efficiency of using ammonia as a sustainable fuel and hydrogen carrier.

Read more ...

Progress toward Ammonia-to-Hydrogen Conversion at H2 Fueling Stations

In the last 12 months ...
Groups in Australia, Japan, Denmark, the U.K., and the U.S. all made progress with technologies that can be used to convert ammonia to hydrogen at fueling stations. This means that hydrogen for fuel cell vehicles can be handled as ammonia from the point of production to the point of dispensing.

Read more ...

BOC/Linde Embraces Ammonia-Based Hydrogen Fueling Technology

Dateline Sydney, August 22, 2017.   Industrial gas vendor Linde Group (under its BOC brand) confirms its participation in a previously announced Australian ammonia-energy project.  With the Commonwealth Scientific and Industrial Research Organization (CSIRO) in the lead, the project partners will build and operate a pilot-scale “ammonia-to-hydrogen cracking” facility that showcases CSIRO’s hydrogen purification membrane technology.  BOC/Linde will contribute goods and services valued at AUD$100,000 (USD$80,000) to the AUD$3.4 million project.

Read more ...

Ammonia-Fueled Solid Oxide Fuel Cell Advance at Kyoto University

Earlier this month the Eguchi Laboratory at Kyoto University announced advances in ammonia-fueled solid oxide fuel cell technology.  The lab was able to produce a functioning fuel cell with a power output of one kilowatt.  The device attained “direct current power generation efficiency” in excess of 50% and reached 1,000 hours of continuous operation.

Read more ...

On the Ground in Japan: FCV Uptake and Hydrogen Fueling Stations

Module four of the ten-module research and development agenda for Japan’s Cross-Ministerial Strategic Innovation Promotion Program -- Energy Carriers is entitled “Basic Technology for Hydrogen Station Utilizing Ammonia.” The rationale for including this technology is that “high purity H2 supply system with low cost hydrogen transportation is a key issue to spread fuel cell vehicles (FCVs).”

A story published last week in the Tokyo Shimbun says that to date FCVs have not spread very far. Among the factors seen as constraints is the cost of hydrogen fueling stations (HFS). The Tokyo Shimbun story states that “according to industry officials, each station that supplies hydrogen to fuel cell vehicles runs about ¥400 million ($3.6 million) in construction costs. In order to achieve profitability, about 1,000 fuel cell vehicles are required as customers per location. Construction is not proceeding.”

So far, the players focused on FCVs do not seem to be looking to ammonia as an expedient that will help reduce the cost of HFS and thereby encourage their construction and by extension the uptake of FCVs. This appears to be a missed opportunity whose benefits may become too compelling to ignore.

Read more ...

CSIRO Membrane: Ammonia to High-Purity Hydrogen

In Australia this week, CSIRO announced funding for the "final stages of development" of its metal membrane technology to produce high-purity hydrogen from ammonia. The two year research project aims to get the technology "ready for commercial deployment," with industrial partners including Toyota and Hyundai.

Read more ...

New Ammonia-Reforming Catalyst System

On April 27 the on-line journal Science Advances published “Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.” The lead author, Katsutoshi Nagaoka, and his six co-authors are associated with the Department of Applied Chemistry at Oita University in Japan. The innovation featured in the paper could prove to be an important enabler of ammonia fuel in automotive applications.

Read more ...