Tag: NH3 Transport Fuel

Safety Assessments of Ammonia as a Transportation Fuel

New data from a number of ammonia energy safety studies will be published later this year. In the meantime, two excellent reports already exist that provide comparative, quantitative risk analyses. Each compares the risks of using ammonia as a fuel in passenger vehicles against the risks of other fuels, including gasoline, LPG, CNG, methanol, and hydrogen. Both conclude that the risks associated with using ammonia as a fuel are "similar, if not lower than for the other fuels."

Read more ...

What drives new investments in low-carbon ammonia production? One million tons per day demand

Last week, the International Maritime Organization (IMO) formally adopted its Initial GHG Strategy. This means that the shipping industry has committed to "reduce the total annual GHG emissions by at least 50% by 2050," and completely "phase them out, as soon as possible in this century."

This also means that a global industry is searching for a very large quantity of carbon-free liquid fuel, with a production and distribution infrastructure that can be scaled up within decades. The most viable option is ammonia. How much would be required? Roughly one million tons of ammonia per day.

Read more ...

P2X, Ammonia Highlighted for Long-Haul Road Transport, Shipping

The International Renewable Energy Agency (IRENA), in partnership with the International Energy Agency (IEA) and Renewable Energy Policy Network for the 21st Century (REN21), released a report this month entitled "Renewable Energy Policies in a Time of Transition." The 112-page document is a comprehensive survey of technologies, policies, and programs that have current or prospective roles in the global transition to a sustainable energy economy. 

For the ammonia energy community, one of its conclusions stands out in vivid relief:

"Developing P2X is crucial because it plays a key role in decarbonising long haul road transport, aviation and shipping sectors that are difficult to decarbonize ... The overall recommendation for developing P2X is to focus on the development of ammonia for the shipping sector as well as long haul road transport, where few or no competing low carbon technologies exist and P2X is expected to be economically viable."

Read more ...

Decarbonising Maritime Transport: OECD report sees ammonia fuel enabling carbon-free shipping by 2035

Twelve months ago, I wrote here that "the shipping industry is beginning to evaluate ammonia as a potential 'bunker fuel,' a carbon-free alternative to the heavy fuel oil (HFO) used in maritime transport." Around that time, I described the obstacle to adoption of ammonia fuel as an information gap, rather than a technology gap, because no new technology was required: the industry simply did not know about ammonia. This information gap had allowed the industry to believe that "CO2 reduction objectives will only be achievable with alternative marine fuels which do not yet exist." I'm glad to announce that this information gap is closing, and fast.

According to a report published last week by the International Transport Forum, the OECD's "think tank for transport policy," the use of "currently known technologies could make it possible to almost completely decarbonise maritime shipping by 2035." This conclusion requires the adoption of ammonia as a zero-carbon fuel.

Read more ...

Pilot project: an ammonia tanker fueled by its own cargo

Last month, an important new consortium in the Netherlands announced its intention to research and demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fuelled by its own cargo." This two-year project will begin with theoretical and laboratory studies, and it will conclude with a pilot-scale demonstration of zero-emission marine propulsion using ammonia fuel in either an internal combustion engine or a fuel cell.

Read more ...

Bunker Ammonia: new report quantifies ammonia as “the most competitive” fuel for zero-emission maritime vessels in 2030

This week, Lloyd's Register published the most significant comparative assessment so far of ammonia's potential as a zero-emission maritime fuel.

The new report compares ammonia, used in either internal combustion engines (ICE) or fuel cells, to other low-carbon technologies, including hydrogen, batteries, and biofuels, estimating costs for 2030. It concludes that, of all the sustainable, available options, ammonia "appears the most competitive."

Read more ...

Progress for Low-Temperature Direct Ammonia Fuel Cells

Speaking at the NH3 Energy+ Topical Conference last month, University of Delaware Adjunct Professor Shimshon Gottesfeld reported on progress made by the university’s direct ammonia fuel cell (DAFC) project. Evidently, the UDel team is now a big step closer to its goal of establishing the DAFC as a viable automotive power plant.

Read more ...

China and Australia collaborate on ammonia as a clean transport fuel

The University of Western Australia has entered the increasingly competitive field of ammonia energy research in Australia, announcing a collaborative agreement to develop "the world's first practical ammonia-powered vehicle" as well as an "ammonia-based hydrogen production plant."

These goals are supported by funding from the R&D arm of Shenhua Group, formerly a coal company but now "China's largest hydrogen producer with a production capacity to power 40 million fuel cell passenger cars."

Read more ...

Round-trip Efficiency of Ammonia as a Renewable Energy Transportation Media

A new study has made a major addition to the available literature on the economic benefits of ammonia energy. This latest study, published by researchers from CSIRO in Australia, provides the data needed to define the round-trip efficiency of using ammonia as a sustainable fuel and hydrogen carrier.

Read more ...

Optimizing technology pathways for Ammonia Fuel: production, transportation, and use

A paper has just been published by researchers in The Philippines who set out to determine the most environmentally benign way to produce, transport, and use ammonia as a fuel for vehicles.

This new work provides a detailed life cycle analysis of a broad range of ammonia technologies, evaluating both carbon and nitrogen footprints of each, and identifying the optimal "well-to-wheel" pathway. Their results support the idea that using ammonia for energy presents a safe and sustainable way to bring about the hydrogen economy.

Read more ...