Tag: Renewable NH3

Ammonia Energy Coming on Like Gangbusters in Australia

NH3FA.Oz, the Australian chapter of the NH3 Fuel Association, held a meeting on August 30 in approximate observance of its one-year anniversary.  John Mott, one of the founders of NH3FA.Oz and a member of the NH3 Fuel Association’s Advisory Board, reported that more than two dozen stakeholders from academia, industry, and the public sector participated.  The meeting came on the heels of the rapid-fire release of three significant reports, and preceded by a week the announcement of an important set of research grants.  The meeting, the reports, and the announcement all made clear that ammonia  is fast becoming a fixture in Australian energy policy.

Read more ...

ThyssenKrupp’s “green hydrogen and renewable ammonia value chain”

In June, ThyssenKrupp announced the launch of its technology for "advanced water electrolysis," which produces carbon-free hydrogen from renewable electricity and water. This "technology enables economical industrial-scale hydrogen plants for energy storage and the production of green chemicals."

Two weeks later, in early July, ThyssenKrupp announced that it was moving forward with a demonstration plant in Port Lincoln, South Australia, which had been proposed earlier this year. This will be "one of the first ever commercial plants to produce CO2-free 'green' ammonia from intermittent renewable resources."

The German conglomerate is one of the four major ammonia technology licensors, so its actions in the sustainable ammonia space are globally significant.

Read more ...

Science Publishes Feature Article on Ammonia Energy

On July 13, Science magazine, the flagship publication of the American Association for the Advancement of Science (AAAS), published a 2,800-word “feature article" on ammonia energy. The article, headlined, “Liquid sunshine: Ammonia made from sun, air, and water could turn Australia into a renewable energy superpower,” is uniformly open-minded and upbeat.  Its opening section ends with a quote from Monash University Professor of Physics and Chemistry Doug MacFarlane; “’Liquid ammonia is liquid energy,’ he says. ‘It's the sustainable technology we need.’”

MacFarlane helped launch the Australian chapter of the NH3 Fuel Association.

Read more ...

Australia’s Woodside Petroleum Considers Ammonia as a Hydrogen Carrier

At last week’s Australian Petroleum Production and Exploration Association Conference, Woodside Petroleum’s chief executive officer Peter Coleman spoke about the “huge” opportunity in hydrogen energy that will develop for the company over the next 10-15 years.  Coleman sees the Japanese market for hydrogen as a promising destination for Woodside’s substantial reserves of natural gas, and indicated the company is evaluating alternative methods of hydrogen transport including as liquid H2, a liquid organic hydride, and ammonia.

Read more ...

Yara’s N-Tech Platform: Making Strides with Green Ammonia

Yara International, one of the world’s largest ammonia producers, is making strides in its development of green ammonia as a fertilizer, chemical intermediate, and energy carrier.  The progress is documented in the company’s 2017 annual report, released last week, and in more detail in a presentation delivered in late February at the 2018 Nitrogen + Syngas Conference in Gothenburg, Sweden.

Read more ...

Renewable ammonia demonstration plant announced in South Australia

This week, the government of South Australia announced a "globally-­significant demonstrator project," to be built by the hydrogen infrastructure company Hydrogen Utility (H2U). The renewable hydrogen power plant will cost AUD$117.5 million ($95 million USD), and will be built by ThyssenKrupp Industrial Solutions with construction beginning in 2019.

The plant will comprise a 15 MW electrolyzer system, to produce the hydrogen, and two technologies for converting the hydrogen back into electricity: a 10MW gas turbine and 5MW fuel cell. The plant will also include a small but significant ammonia plant, making it "among the first ever commercial facilities to produce distributed ammonia from intermittent renewable resources."

Read more ...

The capital intensity of small-scale ammonia plants

The list of investment drivers for building new ammonia plants in the US over the last few years was short, beginning and ending with cheap natural gas. Markets change, however, and the investment drivers for the next generation of new ammonia plants might include low cost electrolyzers, low cost renewable power, carbon taxes, and global demand for ammonia as a carbon-free energy vector.

For this to make sense, however, ammonia needs to be produced without fossil fuel inputs. This is perfectly possible using Haber-Bosch technology with electrolyzers, but today's wind and solar power plants exist on a smaller scale than could support a standard (very big) Haber-Bosch plant. So, to produce renewable ammonia, small-scale ammonia production is essential.

This time series chart shows the capital intensity of today’s ammonia plants. Together, the data illustrate competitive advantages of alternative investment strategies, and demonstrate a shift away from the prior trend toward (and received wisdom of) monolithic mega-plants that rely on a natural gas feedstock.

Read more ...

Future Ammonia Technologies: Electrochemical (part 3)

This series of articles on the future of ammonia synthesis began with a report on the NH3 Energy+ conference presentation by Grigorii Soloveichik, Program Director at the US Department of Energy's ARPA-E, who categorized the technologies as being either improvements on Haber-Bosch or electrochemical (with exceptions).

ARPA-E invests in "transformational, high-risk, early-stage research," and recently began funding ammonia synthesis technologies, not to make renewable fertilizer but to produce "energy-dense zero-carbon liquid fuel." This article will introduce the six electrochemical technologies currently in development with funding from ARPA-E.

Read more ...

Renewable Energy for Industry: IEA’s vision for green ammonia as feedstock, fuel, and energy trade

This morning in Beijing, China, the International Energy Agency (IEA) launched a major new report with a compelling vision for ammonia's role as a "hydrogen-rich chemical" in a low-carbon economy.

Green ammonia would be used by industry "as feedstock, process agent, and fuel," and its production from electrolytic hydrogen would spur the commercial deployment of "several terawatts" of new renewable power. These terawatts would be for industrial markets, additional to all prior estimates of renewable deployment required to serve electricity markets. At this scale, renewable ammonia would, by merit of its ease of storage and transport, enable renewable energy trading across continents.

The IEA's report, Renewable Energy for Industry, will be highlighted later this month at the COP23 in Bonn, Germany, and is available now from the IEA's website.

Read more ...

Renewable Hydrogen in Fukushima and a Bridge to the Future

On August 1, 2017 the Japan Government’s New Energy and Industrial Technology Development Organization (NEDO) announced that it will proceed with funding for the construction of a hydrogen production plant in Namie Township, about ten kilometers from the site of the Fukushima nuclear disaster.  The project’s budget is not mentioned, but the installation is projected to be “the largest scale in the world” -- in other words, a real bridge to the future and not a demonstration project. 

The project no doubt has a variety of motivations, not least the symbolic value of a renewable hydrogen plant rising in the shadow of the Fukushima Daiichi nuclear station.  In economic terms, though, it appears to be a dead end.  This is unfortunate because a similarly conceived project based on ammonia could be a true bridge-building step that aligns with leading-edge developments elsewhere in the world.

Read more ...