Tag: TU Delft

Battolyser Attracts Grant Funding, Corporate Support

The kernel of the story is this: Battolyser B.V. is taking a step forward with the battolyser, its eponymous energy storage technology.  On June 12, Battolyser’s joint venture partners Delft University of Technology (TU Delft) and Proton Ventures announced that they had secured a €480,000 grant from Waddenfonds, a Dutch public-sector funding agency, to build a 15 kW/60 kWh version of the battolyser.  The installation will take place at Nuon’s Magnum generating station at Eemshaven in the Netherlands.  The move makes tangible the vision of the battolyser as an integral part of an energy supply system with a robust quota of renewably generated electricity.

The battolyser is a battery that stores electricity in the conventional galvanic manner until it is fully charged.  At that point, the device uses any additional electricity supplied for the electrolysis of water and evolution of hydrogen.  If the device is integrated with hydrogen buffer storage and an ammonia production train, the result will be a versatile and highly scalable energy storage system that can provide highly responsive grid support on all time scales from seconds to months.  (Ammonia Energy last posted on the battolyser on March 1, 2018.)

Read more ...

Battolyser B.V. Formed in the Netherlands

Proton Ventures and Delft University of Technology (TU Delft), both of the Netherlands, announced in early February the formation of a new company, Battolyser B.V.  The company’s initial goal is to build and demonstrate a pilot version of the eponymous technology that stores electricity and produces hydrogen.  Hans Vrijenhoef, who will direct the new company, indicated that a fully realized system would include an ammonia production train so that the hydrogen could be stored and transported at low cost.  Vrijenhoef is already the Director of Proton Ventures B.V., a member of the NH3 Fuel Association’s Global Federation Advisory Board, and the originator of the NH3 Event power-to-ammonia conference.

Read more ...

TU Delft’s Battery-Electrolyzer Technology

On December 14, the journal Energy & Environmental Science published an article on a new technology, “Efficient electricity storage with a battolyser, an integrated Ni–Fe battery and electrolyser.” The lead author is Fokko Mulder, Professor of Materials for Energy Conversion & Storage at the Delft University of Technology (TU Delft) in the Netherlands.

The system developed by Mulder and his collaborators accepts electricity from an external source and stores it in the conventional manner of all batteries. The twist is that when the battery is fully charged, any additional incoming electricity is used to generate hydrogen and oxygen via electrolysis. The technology may prove to be a valuable element in a grid-scale ammonia-based energy system.

Read more ...