Paper

Starfire Energy’s ammonia cracking and cracked gas purification technology

Ammonia cracking is important for both combustion and fuel cell applications. Starfire Energy has verified that a blend of 70% ammonia + 30% cracked ammonia can burn well in a conventional natural gas burner with very low ammonia slip and acceptable NOx using a stoichiometric fuel-air mixture. A 10 MW turbine or internal combustion engine using such a blend will need about 1.44 tonnes of cracked ammonia per hour. Starfire Energy’s monolith-supported cracking catalyst may be ideally suited for this application. Fully cracked ammonia retains several thousand parts per million of ammonia due to thermodynamic limitations. Residual ammonia can damage…

Paper

Starfire Energy’s 10 Kg/Day Rapid Ramp NH3 System Development

Starfire Energy is building a 10 kg/day NH3 synthesis system using its low pressure Rapid Ramp NH3 process. The system includes hydrogen production by proton exchange membrane electrolyzer, nitrogen production by pressure swing adsorption, NH3 synthesis, and liquid NH3 storage. The tight coupling of the hydrogen, nitrogen, and NH3 processes require minimal reactant buffering. The system design, status, and preliminary performance will be discussed.

Paper

High Flow Ammonia Cracking between 400-600°C

Traditional ammonia cracking is achieved at 850-950 °C in the presence of a nickel catalyst. The reaction is highly endothermic, and maintaining these high temperatures at high flow rates of ammonia gas can be difficult. Here, we present work using our advanced ammonia synthesis catalyst in an ammonia cracking setup. We use a metallic monolith catalyst support to minimize pressure drop at high flow rates. Full NH3 cracking occurs at 600 °C, with the onset of cracking at 400 °C. An output flame can be achieved with a fully tunable ratio of hydrogen to ammonia, depending on the temperature setpoint…