Article

REFUEL Ammonia Use-Side Funding Awards

Six of the projects designated for funding by the ARPA-E REFUEL announcement on December 15 involve technologies on the use side of the ammonia energy space. Three focus on generating hydrogen from ammonia. Two focus on fuel cells that convert ammonia to electricity. One project involves both ammonia synthesis and use.

Article

University of Minnesota’s Ammonia Program

The American Institute of Chemical Engineers (AIChE) will present a Webinar on December 21 on "Distributed Ammonia Synthesis." The presenter will be Edward L. Cussler, Distinguished Institute Professor at the Chemical Engineering and Materials Science Department of the University of Minnesota. Distributed ammonia synthesis is one focus related to ammonia energy at the University of Minnesota - but just one. In fact, UMinn is the locus of a unique and globally significant collection of research efforts that promise to have significant impacts in the ammonia industry and the broader energy sector.

Article

Integrating Ammonia Production with Nuclear Power

In an interview today, Dr. Yaoli Zhang from Xiamen University discussed the case for integrating ammonia production with nuclear power. Dr. Zhang is currently a Visiting Professor at the Massachusetts Institute of Technology in Boston. The idea would be to harness both unused generating capacity and waste heat to produce ammonia with a near-zero carbon footprint.

Article

NH3 Fuel Association President Presents at AIChE Annual Meeting

NH3 Fuel Association President Norm Olson presented his paper “NH3 – the Optimal Liquid Transportation Fuel” on November 9 at the annual meeting of the American Institute of Chemical Engineers (AIChE). The AIChE meeting, held over six days in San Francisco, provided a wide-ranging perspective on the sustainable energy landscape that ammonia energy must compete within.

Article

Sturman Industries’ Dual-Fuel Ammonia Engine

Eddie Sturman, noted inventor and co-founder of Sturman Industries, has been developing ammonia internal-combustion-engine (ICE) technology for several years – "at least six, maybe more." At the 2016 NH3 Fuel Conference, he provided the most in-depth look so far at the results of Sturman Industries' R&D program. Specifically, his talk featured a dual-fuel compression ignition engine powered by a combination of diesel fuel and ammonia.

Article

Australia’s Concentrated Solar Fuels Program

Solar ammonia' could be the key to the sustainable energy economies of two nations. During his talk at the 2016 NH3 Fuel Conference, Keith Lovegrove, Head of Solar Thermal at IT Power Group in Australia, said that Japan and Australia have the opportunity to move their trade in energy onto a climate-friendly foundation. This would involve development of Australia's solar resources in a way that helps Japan ramp up its Strategy for Hydrogen & Fuel Cells in the coming decades.

Article

H2 @ Scale: US DOE’s Request for Information

The ammonia energy community has an opportunity to provide input to the United States Department of Energy (USDOE) as it defines priority areas for its new "H2 @ Scale" initiative. The USDOE posted a Request for Information (RFI) on September 9. Interested parties are invited to comment on all aspects of the H2 @ Scale concept. The deadline for comments is November 4. A link to the RFI is provided below.

Article

Siemens – Green Ammonia

In April 2016, Siemens AG announced that it will construct a plant at the Rutherford Appleton Laboratory in Oxford to demonstrate the production of ammonia in an electrochemical reactor. The technology is seen as a facilitator of the use of ammonia synthesis as a method for storing renewably generated electricity. It involves lower pressures and temperatures than conventional synthesis with the Haber Bosch process. The project will test two different electrolyte chemistries using its 30 kilowatt electrochemical reactor.

Article

Japan’s Fourth Strategic Energy Plan

The Cabinet of the Government of Japan adopted the country’s Fourth Strategic Energy Plan in April 2014. The Plan includes a Strategy for Hydrogen & Fuel Cells which is being executed by the Ministry of Economy, Trade and Industry (METI). The accompanying H2/FC Road Map includes an investigation of three materials that can carry the energy embodied in molecular hydrogen: liquid hydrogen, organic hydrides such as methylcyclohexane, and ammonia.