Home » Commercial Technologies

Category: Commercial Technologies

GenCell A5 update: hydrogen power from ammonia fuel cell (“The Next Big Thing in Energy Production”)

GenCell Energy, an Israeli technology company, recently announced a research collaboration with Fraunhofer UMSICHT, a German research institute, that will deliver a "scale-up of the catalyst synthesis process" for cracking ammonia. This will enable GenCell "to produce large quantities of a novel inexpensive catalyst for generation of hydrogen from ammonia."

Read more ...

Heavy-duty diesel trucks to be converted to use ammonia fuel in Canada

This week, Hydrofuel Inc announced a commercial demonstration project to convert diesel gensets and transport trucks to run on ammonia fuel, with the conversion work and dual-fuel operations scheduled for a three year period.

The CAD $2 million (USD $1.5 million) project will take place at TFX International, in Toronto, and involves the conversion of four existing diesel-fueled assets: two stationary power generators and two transport trucks. These will be converted using Hydrofuel's "aftermarket multi-fuels engine retrofit systems," and they will thereafter be able to operate on a dual fuel basis.

Read more ...

If green ammonia, whence urea? Stamicarbon’s Innovation Agenda

One of the most interesting unanswered questions surrounding green ammonia is this: what about urea?

Last month, a major announcement by Stamicarbon ("the world market leader in design, licensing and development of urea plants") implies an answer: in the long-term context of climate change, urea as a fertilizer may simply need to be phased out.

Stamicarbon announced its new Innovation Agenda at the company's "Future Day" event in Utrecht in April. Its Innovation Agenda covers three areas: speciality fertilizers, digitalization, and "Renewable production of fertilizer (using wind or solar energy to produce fertilizer)."

Read more ...

Dutch Company Breaks New Ground in Ammonia Combustion

Earlier this year the Dutch company Duiker Combustion Engineers shared a company paper with Ammonia Energy that targets ammonia energy as an application for the company’s proprietary stoichiometry-controlled oxidation (SCO) technology.  The technology’s original commercial deployment in petroleum refining occurred in 2010, and now the company sees potentially broad applications for it as a sustainable energy expedient in the industrial and electricity sectors.

Read more ...

Green ammonia: Haldor Topsoe’s solid oxide electrolyzer

Haldor Topsoe has greatly improved the near-term prospects for green ammonia by announcing a demonstration of its next-generation ammonia synthesis plant. This new technology uses a solid oxide electrolysis cell to make synthesis gas (hydrogen and nitrogen), which feeds Haldor Topsoe's existing technology: the Haber-Bosch plant. The product is ammonia, made from air, water, and renewable electricity.

The "SOC4NH3" project was recently awarded funds from the Danish Energy Agency, allowing Haldor Topsoe to demonstrate the system with its academic partners, and to deliver a feasibility study for a small industrial-scale green ammonia pilot plant, which it hopes to build by 2025. There are two dimensions to this technology that make it so important: its credibility and its efficiency.

Read more ...

RAPID: supporting modular manufacturing and process intensification for small-scale ammonia

Using greener feedstocks at low pressures and temperatures, with higher conversion rates and less greenhouse gases is considered a pipe dream. The technology and equipment simply wasn’t available ... until now. The case for small-scale, energy efficient ammonia production is well documented, but access to funds may not be. Now, Manufacturing USA and the Manufacturing Extension Partnership may offer a new path to success.

Read more ...

Rapid Long-Term Growth Projected for Fuel Cells

Last month the Fuji-Keizai Group released its latest biennial review of the global market for fuel cells, “Future Outlook for Fuel Cell-Related Technology and Market in 2018.”  This is at least the third iteration of the report, and comparison across the different editions shows how expectations have evolved.  The report features both polymer electrolyte and solid oxide fuel cells.  Although not mentioned in the report, a number of groups are working on direct ammonia versions of both technologies.

Read more ...

Ammonia plant revamp to decarbonize: Yara Sluiskil

Last year, Yara Sluiskil, in the Netherlands, upgraded its existing ammonia plant by introducing a hydrogen pipeline connection, thereby reducing its reliance on fossil fuels. The pipeline was commissioned in October 2018 and now "ensures the efficient and safe transport of hydrogen," which was previously a waste-product at Dow's nearby ethylene cracker. Already, the project "delivers a CO2 saving of 10,000 tons" and a decrease in energy consumption of "0.15 petajoules (PJ) per year."

This is, perhaps, the first ammonia plant decarbonization revamp, and it shows that it is both possible and affordable to reduce emissions from existing ammonia plants today.

Read more ...

MAN Energy Solutions: an ammonia engine for the maritime sector

In June 2018, MAN Diesel & Turbo rebranded itself MAN Energy Solutions, reflecting the maritime engine market leader's "strategic and technological transformation" towards sustainability. The company was "taking a stand for the Paris Climate Agreement and the global pursuit of a carbon-neutral economy." According to Uwe Lauber, Chairman of the Board, "our activities have a significant impact on the global economy. In shipping, for example, we move more than half of the global stream of goods ... [and] the path to decarbonising the maritime economy starts with fuel decarbonisation, especially in container shipping."

This week, the company took a significant step towards realizing its vision, disclosing that it is "pressing ahead with developing ... an ammonia-fuelled engine." This builds on the technology development pathway that MAN ES presented at the NH3 Energy+ Topical Conference at Pittsburgh in October 2018. The budget and timeline are set: the €5 million (USD$5.7 million) project will last two to three years and, if the shipowners decide to deploy the finished product, "the first ammonia engine could then be in operation by early 2022."

Read more ...

Development of Technologies to Utilize Green Ammonia in the Energy Market – Update on Japan’s SIP Energy Carriers

At the recent NH3 Energy Implementation Conference in Pittsburgh, USA, the keynote speech was given by Shigeru Muraki, Program Director of Japanese government's SIP Energy Carriers project. Muraki is also Chairman of the Green Ammonia Consortium, which will assume responsibility for coordinating the development and deployment of ammonia energy technologies in Japan when the SIP concludes in April 2019.

Given both these roles, Muraki was well placed to address not only the recent years of intense research and development in Japan, but also the near-term roadmap for commercial deployment of ammonia energy technologies.

Read more ...