Article

Wärtsilä, Repsol, and Knutsen to test ammonia four-stroke engine

This week, engine manufacturer Wärtsilä announced “the world’s first long term, full-scale, testing of ammonia as a fuel in a marine four-stroke combustion engine.” The project will begin in the first quarter of 2021, at the Sustainable Energy Catapult Centre’s testing facilities at Stord, Norway. It is supported by a NOK 20 million (USD 2 million) grant from the Norwegian Research Council.

Article

Maersk and partners launch Center for Zero Carbon Shipping

This morning, the Mærsk Mc-Kinney Møller Center for Zero Carbon Shipping was announced. Launched with a “start-up donation” of DKK 400 million (USD 60 million) from the A.P. Møller Foundation, this new research institute intends “to develop new fuel types and technologies,” to decarbonize the maritime sector. Behind the Center for Zero Carbon Shipping is a significant industrial consortium with seven founding members (actively seeking additional partners): ABS, A.P. Moller – Maersk, Cargill, MAN Energy Solutions, Mitsubishi Heavy Industries, NYK Lines, and Siemens Energy.

Article

Engie, Siemens, Ecuity, and STFC publish Feasibility of Ammonia-to-Hydrogen

The UK’s Department for Business, Energy and Industrial Strategy (BEIS) recently published the feasibility study for its Ammonia to Green Hydrogen Project. This studies the techno-economic feasibility of importing green ammonia in order to supply large volumes of high-purity low-carbon hydrogen in the UK. The project has been designed and delivered by a heavyweight consortium of ENGIE, Siemens, Ecuity Consulting, and the UK’s STFC. The feasibility study, which is publicly available, represents the conclusion of Phase One of this project. Phase Two is demonstration: “to raise the TRL of a lithium imide based ammonia cracker from 4 to 6/7,” meaning that the technology is ready for deployment.

Article

Monash team publishes Ammonia Economy Roadmap

Earlier this month, Doug MacFarlane and his team of researchers at Monash University published A Roadmap to the Ammonia Economy in the journal Joule. The paper charts an evolution of ammonia synthesis “through multiple generations of technology development and scale-up.” It provides a clear assessment of “the increasingly diverse range of applications of ammonia as a fuel that is emerging,” and concludes with perspectives on the “broader scale sustainability of an ammonia economy,” with emphasis on the Nitrogen Cycle. The Roadmap is brilliant in its simple distillation of complex and competing technology developments across decades. It assesses the sustainability and scalability of three generations of ammonia synthesis technologies. Put simply, Gen1 is blue ammonia, Gen2 is green ammonia, and Gen3 is electrochemical ammonia. It also outlines the amount of research and development required before each could be broadly adopted (“commercial readiness”). The paper thus provides vital clarity on the role that each generation of technology could play in the energy transition, and the timing at which it could make its impact.

Article

Ammonia, Hydrogen P2X2P Demonstrations Slated for Europe

At this early point in the energy transition, many groups are formulating big-picture concepts for the design of a sustainable energy economy, and many more are developing discrete technologies that will be relevant as the transition advances. The multi-stakeholder H2020 European project known as “FLEXibilize combined cycle power plant through Power-to-X solutions using non-CONventional Fuels” (FLEXnCONFU) is coming from a different direction. Its premise is that construction of a bridge to the future should start now, and should be anchored in aspects of the current energy system that are likely to endure over the long-term.

Article

CSIRO at Work on SOEC Technology

Earlier this month the on-line trade journal gasworld published an interview with CSIRO's Ani Kulkarni that illuminated a research program focused on solid oxide electrolysis technology. The takeaway is that the CSIRO program is making progress that can, in Kulkarni’s words, “elevate this technology from the lab bench to become cost-effective at an industrial scale.”

Article

Methane splitting and turquoise ammonia

Most hydrogen today is produced from fossil fuels – steam methane reforming of natural gas, partial oxidation of coal or oil residues – and entails large CO2 emissions. This fossil hydrogen can be called “grey hydrogen”. Or sometimes, brown. The same color scheme applies to the ammonia produced from it, so we have “grey ammonia.” Or brown ammonia, your call. The exact carbon footprint depends on the fuel used and the efficiency of the facility, so you could easily identify many shades of grey. There is, however, another option to deliver clean hydrogen – and now another colour: turquoise, or green-blue (or blue-green). This is the colour of hydrogen from methane pyrolysis, a process that directly splits methane into hydrogen and solid carbon. Instead of being a waste, like CO2, that must be disposed of safely, solid carbon is potentially a resource.

Article

Cardiff University Launches Ammonia Gas Turbine Project

Last week Agustin Valera-Medina, Associate Professor at Cardiff University in the United Kingdom, told Ammonia Energy that work is underway on a £1.9 million (USD $2.3 million) project that will advance the frontiers of ammonia-gas turbine (AGT) technology. Valera-Medina is serving as the Principal Investigator of the Storage of Ammonia for Energy (SAFE) – AGT Pilot, a four-year effort that hopes to develop “a unique, competitive technology that can be implemented to support the hydrogen transition.”

Article

Wärtsilä Tests Internal Combustion of Ammonia

Last week Wärtsilä, the Finnish engine and energy equipment manufacturer, unveiled the latest stage in its engagement with ammonia as an energy vector. In a press release headlined “Wärtsilä advances future fuel capabilities with first ammonia tests,” the company described a test program aimed at exploring ammonia’s properties as an internal combustion fuel. Kaj Portin, General Manager of Fuel & Operational Flexibility in Wärtsilä’s Marine division, commented that “the first tests have yielded promising results.”

Article

Literature Review: Ammonia as a Fuel for Compression Ignition Engines

The diesel engine, also known as the compression ignition (CI) engine, has been a workhorse of the modern energy economy for more than a hundred years. Its role in the coming sustainable energy economy will be determined by its ability to co-evolve with climate-friendly fuels. Two researchers from the National Institute of Advanced Industrial Science and Technology in Japan have now examined the fit between ammonia and the CI engine. Pavlos Dimitriou and Rahat Javaid arrive at a two-part conclusion in their paper, “A review of ammonia as a compression ignition engine fuel,” published in January in the International Journal of Hydrogen Energy. Part one is good news: “Ammonia as a compression ignition fuel can be currently seen as a feasible solution.” Part two is a dose of qualifying reality: to manage emissions of N2O, NOx, and unburnt NH3, “aftertreatment systems are mandatory for the adaptation of this technology,” which means that ammonia-fueled CI engines are likely to be feasible “only for marine, power generation and possibly heavy-duty applications where no significant space constraints exist.”