Article

Coordinated scission of N-H bonds

A paper published in this week's edition of Science outlines a new approach to breaking the hydrogen-nitrogen bonds in ammonia, allowing the production of hydrogen at low temperatures. This research was also reported on phys.org under the headline: "Method found for pulling hydrogen from ammonia for use as clean fuel."

Article

Low-carbon ammonia synthesis: Japan’s ‘Energy Carriers’

In 2018, a pilot plant in Japan will demonstrate a new way to produce ammonia at industrial-scale, with a low carbon footprint. This is part of Japan's 'Energy Carriers' R&D initiative, which aims to develop technologies to enable the nation's transition to a carbon-free hydrogen economy. The scope of the program covers ten subjects that encompass the full "CO2-free hydrogen value chain." Three of these ten programs describe a technology pathway for making low-carbon ammonia.

Article

A Roadmap for Ammonia Fuel in Fujian Province

Researchers from Fujian Province presented their work at the 2016 NH3 Fuel Conference, and introduced the far-reaching plans of the Ammonia Fuel Synergy group at the College of Energy, Xiamen University, in China. Forest (Zhaolin) Wang's presentation, Ammonia as a Key to Meeting the Fuel Demand of China, contained valuable insight into the potential of ammonia fuel in China, and outlined the group's roadmaps for developing an ammonia-natural gas dual fueled car by 2018, and an ammonia-methanol dual fuel car by 2020.

Article

Comparative Life Cycle Assessment of NH3 as a Transportation Fuel in Ontario

A recent paper from the University of Ontario Institute of Technology, published in June 2016, provides new data on the relative efficiency and safety of using ammonia as a transportation fuel. It presents a cradle-to-grave "comparative life cycle assessment" for a range of vehicles, encompassing the vehicle cycles (manufacturing, maintenance, and disposal) and the fuel cycle (operation).

Article

Australia’s Concentrated Solar Fuels Program

Solar ammonia' could be the key to the sustainable energy economies of two nations. During his talk at the 2016 NH3 Fuel Conference, Keith Lovegrove, Head of Solar Thermal at IT Power Group in Australia, said that Japan and Australia have the opportunity to move their trade in energy onto a climate-friendly foundation. This would involve development of Australia's solar resources in a way that helps Japan ramp up its Strategy for Hydrogen & Fuel Cells in the coming decades.

Article

Ammonia Fuel Cells: SOFC stack test and system analysis

New research, recently published in the International Journal of Hydrogen Energy, demonstrates that solid oxide fuel cell (SOFC) systems fueled with ammonia could be "more efficient than equivalent hydrogen-based" systems. This new paper comes out of the Fuel Cell Lab at the University of Perugia, in Italy, and builds upon years of research coming out of that laboratory on the use of ammonia and urea in fuel cells.

Article

Ammonia Turbine Power Generation with Reduced NOx

A common concern with ammonia fuel is that NOx emissions will be too high to control. However, in new research from Turkey, USA, and Japan, presented at this year's NH3 Fuel Conference in September 2016, two things became clear. First, NOx emissions can be reduced to less than 10ppm by employing good engineering design and exploiting the chemical properties of ammonia, which plays a dual role as both the fuel and the emissions-cleanup agent. Second, the deployment of ammonia-fueled turbines for power generation is not only feasible, but actively being developed, with demonstration units running today and improved demonstration projects currently in development.

Article

Study on Reduced Chemical Mechanisms of Ammonia / Methane Combustion under Gas Turbine Conditions

On September 1st, academic journal Energy & Fuels published a new paper that features research coming out of the UK's Cardiff University and Ireland's University of Limerick. This study demonstrates a "reduced mechanism" for simulating the "robust numerical analyses with detailed chemistry" necessary for the "industrial implementation" of ammonia in gas turbine combustion for "future power generation." Here's the abstract: