Not a current member. Become a member today.

IHI Corporation

Article

IHI Corporation pushes its ammonia combustion technologies closer to commercialization

This week, an article in Japan Chemical Daily disclosed IHI Corporation's future plans for its range of ammonia combustion technologies, each of which has been demonstrated in the last year. These include "ammonia-coal co-fired thermal power boilers, ammonia-fired gas turbines and direct ammonia solid oxide fuel cells (SOFCs)." Under the headline "IHI Speeds up Development of Several Ammonia-Based Technologies," the article describes the company's ambitions for scaling-up each of these technologies, and provides a schedule for its next set of demonstration projects.

Article

IHI Breaks Ground on Hydrogen Research Facility

Japanese capital goods manufacturer IHI Corporation announced last month that it has started construction of a 1,000 square-meter hydrogen research facility in Fukushima Prefecture.  The facility will be an addition to IHI’s Green Energy Center in Soma City which was launched in 2018.  One of the Center’s original focuses is the production steps of the green hydrogen supply chain using solar electricity to power developmental electrolyzers.  The new facility will focus on hydrogen carriers, including ammonia and methane (via “methanation” of carbon dioxide), that can be used in the logistics steps of the supply chain.

Paper

Performance of Ammonia/Natural Gas Co-Fired Gas Turbine with Two-Stage Combustor

Ammonia has several advantages as renewable energy career [1-3]. Regarding the manufacturing process, the Harbor-Bosch method is already established. For transportation, ammonia can easily be liquefied at room temperature. Therefore, both transportation and storage are much easier than in case of hydrogen. In utilization, ammonia is combustible and used as a carbon-free fuel. However, ammonia has different combustion characteristics from natural gas. For example, the nitrogen atom contained in ammonia molecule causes high NOx emission through fuel NOx mechanisms [3]. Laminar burning velocity of ammonia is much lower; it might increase unburnt ammonia emission and cause unstable operation of gas…

Paper

New Technology of the Ammonia Co-Firing with Pulverized Coal to Reduce the NOx Emission

Ammonia is recognized as the new energy carrier and it is expected to be introduced into the society in a short time, since the infrastructures related to the ammonia, such as the mass production, transportation and storage are already introduced to produce the fertilizer for the agriculture. There is one technical issue, to use the ammonia in the direct combustion as the fuel for the electric power generation. It is the increase of the NO concentration in the exhaust gas. Ammonia contains the large amount of the nitrogen, comparing with any other fuels that human being has ever treated. Nitrogen…

Article

New Video Summarizes SIP Energy Carriers Accomplishments

ANNOUNCEMENT: The Japanese Government’s Cabinet Office and the Japan Science and Technology Agency have released an English-language video that summarizes the accomplishments of the Cross-Ministerial Strategic Innovation Promotion Program’s Energy Carriers initiative.  The release coincides with the end-of-March conclusion of Energy Carriers’ work, and anticipates this month’s formal activation of the Green Ammonia Consortium.

Article

Ammonia Gas Turbines on European R&D List

ETN Global’s latest R&D Recommendation was released in October 2018.  ETN stands for European Turbine Network and its technology of interest is the gas turbine.  The 2018 Recommendation is notable because it is the first that includes ammonia on the R&D agenda.

Article

Ammonia for Fuel Cells: AFC, SOFC, and PEM

In the last 12 months ... IHI Corporation tested its 1 kW ammonia-fueled solid oxide fuel cell (SOFC) in Japan; Project Alkammonia concluded its work on cracked-ammonia-fed alkaline fuel cells (AFC) in the EU; the University of Delaware's project for low-temperature direct ammonia fuel cells (DAFC) continues with funding from the US Department of Energy's ARPA-E; and, in Israel, GenCell launched its commercial 4 kW ammonia-fed AFC with field demonstrations at up to 800 locations across Kenya.

Article

Direct Ammonia Fuel Cells Take Another Step Forward in Japan

Japanese manufacturing concern IHI reported on May 16 that it had “successfully generated 1 kW class power” from a direct ammonia solid oxide fuel cell.  This is the latest milestone for a technology that could play a major role in the roll-out  of Japan’s Hydrogen Society.

Article

IHI First to Reach 20% Ammonia-Coal Co-Firing Milestone

The Japanese manufacturer IHI Corporation announced on March 28 that it had successfully demonstrated the co-firing of ammonia and coal in a fuel mix composed of 20% ammonia. Ammonia-coal co-firing had previously been demonstrated by Chugoku Electric in a fuel mix composed of just 0.6-0.8% ammonia. IHI says its ultimate goal is to “construct a value chain that connects the production and use of ammonia, using combustion technology of gas turbines and coal-fired boilers, using ammonia as fuel.”

Article

IHI Commits to Ammonia Energy. Big Time.

During his presentation at the November 2017 NH3 Energy + Topical Conference, Shogo Onishi of IHI Corporation described the progress made by IHI and Tohoku University in limiting NOx emissions from ammonia-fired gas turbines (AGTs).  Regular attendees of the annual NH3 Fuel Conference identify IHI with its work on AGTs since the company also addressed this topic at the 2016 and 2015 events.  However, a scan of published materials shows that AGTs are just one aspect of IHI’s activity in the ammonia energy arena.  In fact, IHI is also looking at the near-term commercialization of technologies in ammonia-coal co-firing in steam boilers and direct ammonia fuel cells.  This level and breadth of commitment to ammonia energy is unique among global capital goods producers.

Article

Green Ammonia Consortium Comes to the Fore in Japan

On December 8, the Nikkei Sangyo Shimbun ran a story about the future of coal-fired electricity generation in Japan.  The story touched on topics ranging from the plumbing in a Chugoku Electric generating station to the Trump administration’s idiosyncratic approach to environmental diplomacy.  And it contained this sentence: “Ammonia can become a ‘savior’ of coal-fired power.” Clearly an explanation is in order.

Article

SIP “Energy Carriers” video: ammonia turbines, industrial furnaces, fuel cells

To demonstrate the progress of the SIP "Energy Carriers" program, the Japan Science and Technology Agency last week released a video, embedded below, that shows three of its ammonia fuel research and development projects in operation. R&D is often an abstract idea: this video shows what it looks like to generate power from ammonia. As it turns out, fuel cells aren't hugely photogenic. Nonetheless, if a picture is worth a thousand words, this will be a long article.

Article

Advances in Ammonia-Fired Gas Turbines Open Up Major Use Case

In the last 12 months ... Researchers seeking to fire gas turbines with ammonia made significant strides toward realization of commercial-scale machines in both the U.K. and Japan. This means that electricity generation has become a realistic near-term use-case for ammonia energy.

Article

Green Ammonia Consortium: Bright Prospects in Japan for Ammonia as an Energy Carrier

In the last 12 months ... In July 2017, 19 companies and three research institutions came together to form the Green Ammonia Consortium. Before this development, it was unclear whether ammonia would find a significant role in Japan’s hydrogen economy. In the wake of this announcement, however, ammonia seems to have claimed the leading position in the race among potential energy carriers.

Paper

Development of Materials and Systems for Ammonia-Fueled Solid Oxide Fuel Cells

Hydrogen is the primary fuel source for fuel cells. However, the low volume density and difficulty in storage and transportation are major obstacles for the practical utilization. On-site generation of hydrogen from its carrier is an effective method for the fuel supply. Among various hydrogen carriers, ammonia is one of the promising candidates. Ammonia has high hydrogen density. The boiling point of ammonia is relatively high, leading to the ease in liquefaction and transportation. Hydrogen can be produced from ammonia with a mildly endothermic process. The reaction temperature of ammonia cracking is about 600˚C or higher which is close to…

Article

Major Development for Ammonia Energy in Japan

On July 25, the Japan Science and Technology Agency (JST) announced that a collection of companies and research institutions had come together to form a Green Ammonia Consortium.  The 22-member group will take over responsibility for the ammonia aspect of the Cross-Ministerial Strategic Innovation Program (SIP) Energy Carriers agenda when the SIP is discontinued at the end of fiscal 2018.  A JST press release states that the Consortium intends to develop a strategy for “forming [an] ammonia value chain,” promote demonstration projects that can further commercialization, and enable “Japanese industry to lead the world market.”

Article

Ammonia-Fueled Solid Oxide Fuel Cell Advance at Kyoto University

Earlier this month the Eguchi Laboratory at Kyoto University announced advances in ammonia-fueled solid oxide fuel cell technology.  The lab was able to produce a functioning fuel cell with a power output of one kilowatt.  The device attained “direct current power generation efficiency” in excess of 50% and reached 1,000 hours of continuous operation.

Article

Industrial demonstrations of ammonia fuel in Japan

Most of the ammonia energy projects I write about are in the research and development phase but, as I've said before, technology transfer from the academic lab to commercial deployment is moving swiftly - especially in Japan. Last week, Nikkei Asian Review published two articles outlining plans by major engineering and power firms to build utility-scale demonstrations using ammonia as a fuel for electricity generation. Both projects aim to reduce the carbon intensity of the Japanese electrical grid, incrementally but significantly, by displacing a portion of the fossil fuels with ammonia. The first project will generate power using an ammonia-coal mix, while the second will combine ammonia with natural gas.

Article

How to create a market for low-carbon ammonia: product labeling

I wrote last week about ARPA-E's "transformative" ammonia synthesis technologies, describing three technology pathways under development: low pressure Haber-Bosch, electrochemical processes, and advanced electrolysis. ARPA-E's ambitious R&D program might imply that a meaningful, commercial market for sustainable ammonia is still decades away. It represents, however, only the slow American tip of a fast-moving global iceberg. In Japan, where there's no debate about climate science, the national effort is already well underway, with three programs to develop low-carbon ammonia synthesis under the Cross-ministerial Strategic Innovation Promotion Program (SIP), 'Energy Carriers.'

Article

Ammonia Turbine Power Generation with Reduced NOx

A common concern with ammonia fuel is that NOx emissions will be too high to control. However, in new research from Turkey, USA, and Japan, presented at this year's NH3 Fuel Conference in September 2016, two things became clear. First, NOx emissions can be reduced to less than 10ppm by employing good engineering design and exploiting the chemical properties of ammonia, which plays a dual role as both the fuel and the emissions-cleanup agent. Second, the deployment of ammonia-fueled turbines for power generation is not only feasible, but actively being developed, with demonstration units running today and improved demonstration projects currently in development.

Article

IHI Corporation pushes its ammonia combustion technologies closer to commercialization

This week, an article in Japan Chemical Daily disclosed IHI Corporation's future plans for its range of ammonia combustion technologies, each of which has been demonstrated in the last year. These include "ammonia-coal co-fired thermal power boilers, ammonia-fired gas turbines and direct ammonia solid oxide fuel cells (SOFCs)." Under the headline "IHI Speeds up Development of Several Ammonia-Based Technologies," the article describes the company's ambitions for scaling-up each of these technologies, and provides a schedule for its next set of demonstration projects.

Article

IHI Breaks Ground on Hydrogen Research Facility

Japanese capital goods manufacturer IHI Corporation announced last month that it has started construction of a 1,000 square-meter hydrogen research facility in Fukushima Prefecture.  The facility will be an addition to IHI’s Green Energy Center in Soma City which was launched in 2018.  One of the Center’s original focuses is the production steps of the green hydrogen supply chain using solar electricity to power developmental electrolyzers.  The new facility will focus on hydrogen carriers, including ammonia and methane (via “methanation” of carbon dioxide), that can be used in the logistics steps of the supply chain.

Article

New Video Summarizes SIP Energy Carriers Accomplishments

ANNOUNCEMENT: The Japanese Government’s Cabinet Office and the Japan Science and Technology Agency have released an English-language video that summarizes the accomplishments of the Cross-Ministerial Strategic Innovation Promotion Program’s Energy Carriers initiative.  The release coincides with the end-of-March conclusion of Energy Carriers’ work, and anticipates this month’s formal activation of the Green Ammonia Consortium.

Article

Ammonia Gas Turbines on European R&D List

ETN Global’s latest R&D Recommendation was released in October 2018.  ETN stands for European Turbine Network and its technology of interest is the gas turbine.  The 2018 Recommendation is notable because it is the first that includes ammonia on the R&D agenda.

Article

Ammonia for Fuel Cells: AFC, SOFC, and PEM

In the last 12 months ... IHI Corporation tested its 1 kW ammonia-fueled solid oxide fuel cell (SOFC) in Japan; Project Alkammonia concluded its work on cracked-ammonia-fed alkaline fuel cells (AFC) in the EU; the University of Delaware's project for low-temperature direct ammonia fuel cells (DAFC) continues with funding from the US Department of Energy's ARPA-E; and, in Israel, GenCell launched its commercial 4 kW ammonia-fed AFC with field demonstrations at up to 800 locations across Kenya.

Article

Direct Ammonia Fuel Cells Take Another Step Forward in Japan

Japanese manufacturing concern IHI reported on May 16 that it had “successfully generated 1 kW class power” from a direct ammonia solid oxide fuel cell.  This is the latest milestone for a technology that could play a major role in the roll-out  of Japan’s Hydrogen Society.

Article

IHI First to Reach 20% Ammonia-Coal Co-Firing Milestone

The Japanese manufacturer IHI Corporation announced on March 28 that it had successfully demonstrated the co-firing of ammonia and coal in a fuel mix composed of 20% ammonia. Ammonia-coal co-firing had previously been demonstrated by Chugoku Electric in a fuel mix composed of just 0.6-0.8% ammonia. IHI says its ultimate goal is to “construct a value chain that connects the production and use of ammonia, using combustion technology of gas turbines and coal-fired boilers, using ammonia as fuel.”

Article

IHI Commits to Ammonia Energy. Big Time.

During his presentation at the November 2017 NH3 Energy + Topical Conference, Shogo Onishi of IHI Corporation described the progress made by IHI and Tohoku University in limiting NOx emissions from ammonia-fired gas turbines (AGTs).  Regular attendees of the annual NH3 Fuel Conference identify IHI with its work on AGTs since the company also addressed this topic at the 2016 and 2015 events.  However, a scan of published materials shows that AGTs are just one aspect of IHI’s activity in the ammonia energy arena.  In fact, IHI is also looking at the near-term commercialization of technologies in ammonia-coal co-firing in steam boilers and direct ammonia fuel cells.  This level and breadth of commitment to ammonia energy is unique among global capital goods producers.

Article

Green Ammonia Consortium Comes to the Fore in Japan

On December 8, the Nikkei Sangyo Shimbun ran a story about the future of coal-fired electricity generation in Japan.  The story touched on topics ranging from the plumbing in a Chugoku Electric generating station to the Trump administration’s idiosyncratic approach to environmental diplomacy.  And it contained this sentence: “Ammonia can become a ‘savior’ of coal-fired power.” Clearly an explanation is in order.

Article

SIP “Energy Carriers” video: ammonia turbines, industrial furnaces, fuel cells

To demonstrate the progress of the SIP "Energy Carriers" program, the Japan Science and Technology Agency last week released a video, embedded below, that shows three of its ammonia fuel research and development projects in operation. R&D is often an abstract idea: this video shows what it looks like to generate power from ammonia. As it turns out, fuel cells aren't hugely photogenic. Nonetheless, if a picture is worth a thousand words, this will be a long article.

Article

Advances in Ammonia-Fired Gas Turbines Open Up Major Use Case

In the last 12 months ... Researchers seeking to fire gas turbines with ammonia made significant strides toward realization of commercial-scale machines in both the U.K. and Japan. This means that electricity generation has become a realistic near-term use-case for ammonia energy.

Article

Green Ammonia Consortium: Bright Prospects in Japan for Ammonia as an Energy Carrier

In the last 12 months ... In July 2017, 19 companies and three research institutions came together to form the Green Ammonia Consortium. Before this development, it was unclear whether ammonia would find a significant role in Japan’s hydrogen economy. In the wake of this announcement, however, ammonia seems to have claimed the leading position in the race among potential energy carriers.

Article

Major Development for Ammonia Energy in Japan

On July 25, the Japan Science and Technology Agency (JST) announced that a collection of companies and research institutions had come together to form a Green Ammonia Consortium.  The 22-member group will take over responsibility for the ammonia aspect of the Cross-Ministerial Strategic Innovation Program (SIP) Energy Carriers agenda when the SIP is discontinued at the end of fiscal 2018.  A JST press release states that the Consortium intends to develop a strategy for “forming [an] ammonia value chain,” promote demonstration projects that can further commercialization, and enable “Japanese industry to lead the world market.”

Article

Ammonia-Fueled Solid Oxide Fuel Cell Advance at Kyoto University

Earlier this month the Eguchi Laboratory at Kyoto University announced advances in ammonia-fueled solid oxide fuel cell technology.  The lab was able to produce a functioning fuel cell with a power output of one kilowatt.  The device attained “direct current power generation efficiency” in excess of 50% and reached 1,000 hours of continuous operation.

Article

Industrial demonstrations of ammonia fuel in Japan

Most of the ammonia energy projects I write about are in the research and development phase but, as I've said before, technology transfer from the academic lab to commercial deployment is moving swiftly - especially in Japan. Last week, Nikkei Asian Review published two articles outlining plans by major engineering and power firms to build utility-scale demonstrations using ammonia as a fuel for electricity generation. Both projects aim to reduce the carbon intensity of the Japanese electrical grid, incrementally but significantly, by displacing a portion of the fossil fuels with ammonia. The first project will generate power using an ammonia-coal mix, while the second will combine ammonia with natural gas.

Article

How to create a market for low-carbon ammonia: product labeling

I wrote last week about ARPA-E's "transformative" ammonia synthesis technologies, describing three technology pathways under development: low pressure Haber-Bosch, electrochemical processes, and advanced electrolysis. ARPA-E's ambitious R&D program might imply that a meaningful, commercial market for sustainable ammonia is still decades away. It represents, however, only the slow American tip of a fast-moving global iceberg. In Japan, where there's no debate about climate science, the national effort is already well underway, with three programs to develop low-carbon ammonia synthesis under the Cross-ministerial Strategic Innovation Promotion Program (SIP), 'Energy Carriers.'

Article

Ammonia Turbine Power Generation with Reduced NOx

A common concern with ammonia fuel is that NOx emissions will be too high to control. However, in new research from Turkey, USA, and Japan, presented at this year's NH3 Fuel Conference in September 2016, two things became clear. First, NOx emissions can be reduced to less than 10ppm by employing good engineering design and exploiting the chemical properties of ammonia, which plays a dual role as both the fuel and the emissions-cleanup agent. Second, the deployment of ammonia-fueled turbines for power generation is not only feasible, but actively being developed, with demonstration units running today and improved demonstration projects currently in development.

Paper

Performance of Ammonia/Natural Gas Co-Fired Gas Turbine with Two-Stage Combustor

Ammonia has several advantages as renewable energy career [1-3]. Regarding the manufacturing process, the Harbor-Bosch method is already established. For transportation, ammonia can easily be liquefied at room temperature. Therefore, both transportation and storage are much easier than in case of hydrogen. In utilization, ammonia is combustible and used as a carbon-free fuel. However, ammonia has different combustion characteristics from natural gas. For example, the nitrogen atom contained in ammonia molecule causes high NOx emission through fuel NOx mechanisms [3]. Laminar burning velocity of ammonia is much lower; it might increase unburnt ammonia emission and cause unstable operation of gas…

Paper

New Technology of the Ammonia Co-Firing with Pulverized Coal to Reduce the NOx Emission

Ammonia is recognized as the new energy carrier and it is expected to be introduced into the society in a short time, since the infrastructures related to the ammonia, such as the mass production, transportation and storage are already introduced to produce the fertilizer for the agriculture. There is one technical issue, to use the ammonia in the direct combustion as the fuel for the electric power generation. It is the increase of the NO concentration in the exhaust gas. Ammonia contains the large amount of the nitrogen, comparing with any other fuels that human being has ever treated. Nitrogen…

Paper

Development of Materials and Systems for Ammonia-Fueled Solid Oxide Fuel Cells

Hydrogen is the primary fuel source for fuel cells. However, the low volume density and difficulty in storage and transportation are major obstacles for the practical utilization. On-site generation of hydrogen from its carrier is an effective method for the fuel supply. Among various hydrogen carriers, ammonia is one of the promising candidates. Ammonia has high hydrogen density. The boiling point of ammonia is relatively high, leading to the ease in liquefaction and transportation. Hydrogen can be produced from ammonia with a mildly endothermic process. The reaction temperature of ammonia cracking is about 600˚C or higher which is close to…