Not a current member. Become a member today.

National Institute of Advanced Industrial Science and Technology (AIST)

Article

IHI Breaks Ground on Hydrogen Research Facility

Japanese capital goods manufacturer IHI Corporation announced last month that it has started construction of a 1,000 square-meter hydrogen research facility in Fukushima Prefecture.  The facility will be an addition to IHI’s Green Energy Center in Soma City which was launched in 2018.  One of the Center’s original focuses is the production steps of the green hydrogen supply chain using solar electricity to power developmental electrolyzers.  The new facility will focus on hydrogen carriers, including ammonia and methane (via “methanation” of carbon dioxide), that can be used in the logistics steps of the supply chain.

Paper

Demonstration and Optimization of Green Ammonia Production Operation Responding to Fluctuating Hydrogen Production from Renewable Energy

Ammonia is a promising hydrogen carrier to transport green hydrogen from overseas to Japan at lower cost and resulting in lower lifecycle CO2 emission. Low carbon ammonia will be produced by fossil fuel reforming with CCS or EOR at the early stage of the introduction of ammonia fuel to the market. Green ammonia production from renewable sources is the ultimate goal, but there are some issues to commercialize. The low capacity factor, which is caused by the fluctuation of solar irradiation or wind speed, is a big issue which leads to ammonia production costs. In this presentation, we would like…

Paper

Pure Ammonia Combustion Micro Gas Turbine System

To protect against global warming, a massive influx of renewable energy is expected. Although hydrogen is a renewable media, its storage and transportation in large quantity has some problems. Ammonia fuel, however, is a hydrogen energy carrier and carbon-free fuel, and its storage and transportation technology is already established. In the 1960s, development of ammonia combustion gas turbines was abandoned because combustion efficiency was unacceptably low [1]. Recent demand for hydrogen energy carriers has revived the interest in ammonia as fuel [2, 3]. In 2015, ammonia-combustion gas turbine power generation was reported in Japan using a 50-kW class micro gas…

Paper

Effect of Preparation Condition on Ammonia Synthesis over Ru/CeO

Development of the hydrogen carrier system is of great interest to utilization of renewable energy. To store renewable energy, especially for the electricity from photovoltaic and wind turbine, fluctuation of the generated electricity is not appropriate for the stable supply of the electric power. Also, the hydrogen production by the water electrolysis with the fluctuating electricity results in the fluctuation of hydrogen production. When we store the hydrogen derived from renewable energy in the carrier compounds, it is necessary to consider the reduction or smoothing of fluctuation in the hydrogen flow rate as a feed of chemical process. Although the…

Paper

Synthesis and Assessment of Process Systems for Production of Ammonia Using Nitric Oxide in Combustion Exhaust Gas

Recently, ammonia is regarded as an alternative fuel without carbon dioxide (CO2). Numerous studies have been performed using ammonia as a fuel. Iki and Kurata confirmed the working of a prototype for the ammonia gas turbine, where ammonia burned in an environmentally benign way to generate electricity, exhausting only water and nitrogen [1]. From the view of cycle of ammonia for the development of a society with low carbon, it is required to synthesize carbon-free ammonia (green ammonia) in small plants. This green ammonia can be synthesized using renewable energy, with hydrogen from electrolysis of water and nitrogen from pressure…

Article

JGC Corporation demonstrates “world’s first” carbon-free ammonia energy cycle

In late 2018, JGC Corporation issued a press release to celebrate a "world's first" in ammonia energy, demonstrating at its pilot plant in Koriyama both "synthesis of ammonia with hydrogen produced through the electrolysis of water by renewable energy, and generation of electricity through gas turbines fueled by synthesized ammonia." By demonstrating the feasibility of using ammonia on both sides of the renewable energy equation -- first, producing green ammonia from intermittent renewable electricity and, second, combusting this carbon-free fuel for power generation -- the project demonstrates the role of ammonia in the "establishment of an energy chain ... that does not emit CO2 (CO2-free) from production to power generation."

Article

Green ammonia demonstration plants now operational, in Oxford and Fukushima

Two new pilot projects for producing "green ammonia" from renewable electricity are now up and running and successfully producing ammonia. In April 2018, the Ammonia Manufacturing Pilot Plant for Renewable Energy started up at the Fukushima Renewable Energy Institute - AIST (FREA) in Japan. Earlier this week, Siemens launched operations at its Green Ammonia Demonstrator, at the Rutherford Appleton Laboratory outside Oxford in the UK. The commercial product coming out of these plants is not ammonia, however, it is knowledge. While both the FREA and Siemens plants are of similar scale, with respective ammonia capacities of 20 and 30 kg per day, they have very different objectives. At FREA, the pilot project supports catalyst development with the goal of enabling efficient low-pressure, low-temperature ammonia synthesis. At Siemens, the pilot will provide insights into the business case for ammonia as a market-flexible energy storage vector.

Article

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Article

SIP “Energy Carriers” video: ammonia turbines, industrial furnaces, fuel cells

To demonstrate the progress of the SIP "Energy Carriers" program, the Japan Science and Technology Agency last week released a video, embedded below, that shows three of its ammonia fuel research and development projects in operation. R&D is often an abstract idea: this video shows what it looks like to generate power from ammonia. As it turns out, fuel cells aren't hugely photogenic. Nonetheless, if a picture is worth a thousand words, this will be a long article.

Article

Progress toward Ammonia-to-Hydrogen Conversion at H2 Fueling Stations

In the last 12 months ... Groups in Australia, Japan, Denmark, the U.K., and the U.S. all made progress with technologies that can be used to convert ammonia to hydrogen at fueling stations. This means that hydrogen for fuel cell vehicles can be handled as ammonia from the point of production to the point of dispensing.

Article

Green Ammonia Consortium: Bright Prospects in Japan for Ammonia as an Energy Carrier

In the last 12 months ... In July 2017, 19 companies and three research institutions came together to form the Green Ammonia Consortium. Before this development, it was unclear whether ammonia would find a significant role in Japan’s hydrogen economy. In the wake of this announcement, however, ammonia seems to have claimed the leading position in the race among potential energy carriers.

Article

Kawasaki Moving Ahead with LH2 Tanker Project

Kawasaki Heavy Industries (KWI) is moving ahead with plans for a “liquefied hydrogen carrier ship,” as reported by at least two Japanese news outlets since July.  This means that the groups backing each of the energy carriers included within Japan’s Cross-Ministerial Strategic Innovation Promotion Program (SIP) have all made significant moves ahead of the program’s termination at the end of 2018.  On July 25, 2017 the Japan Science and Technology Agency (JST) announced that a collection of companies and research institutions had come together to form the Green Ammonia Consortium.  On July 27, 2017, Chiyoda Corporation announced that work was starting on a demonstration project that will transport hydrogen from Brunei to Japan using liquid organic hydride carrier technology. 

Article

Major Development for Ammonia Energy in Japan

On July 25, the Japan Science and Technology Agency (JST) announced that a collection of companies and research institutions had come together to form a Green Ammonia Consortium.  The 22-member group will take over responsibility for the ammonia aspect of the Cross-Ministerial Strategic Innovation Program (SIP) Energy Carriers agenda when the SIP is discontinued at the end of fiscal 2018.  A JST press release states that the Consortium intends to develop a strategy for “forming [an] ammonia value chain,” promote demonstration projects that can further commercialization, and enable “Japanese industry to lead the world market.”

Article

The Ammonia Economy at the ACS National Meeting

The American Chemical Society (ACS) has published the program for its 2017 National Meeting, which takes place next month in Washington DC and includes a session dedicated to the "Ammonia Economy." The first day of the week-long meeting, Sunday August 20th, will feature a full morning of technical papers from the US, UK, and Japan, covering ammonia energy topics across three general areas: producing hydrogen from ammonia, developing new catalysts for ammonia synthesis and oxidation, and storing ammonia in solid chemical form.

Article

Ammonia-Fueled Gas Turbine Power Generation

Hideaki Kobayashi, professor at the Institute of Fluid Science at Tohoku University in Sendai, Japan, has developed the world’s first technology for direct combustion of ammonia in a gas turbine. The advance was made in cooperation with the National Institute of Advanced Industrial Science and Technology (AIST) under a program led by Norihiko Iki.

Article

On the Ground in Japan

Two talks delivered in December show the tiny steps that allow a country to transition to a sustainable energy economy. The country is Japan. The events hosting the talks were short-format symposia whose evident objective was to draw in business and technical people who might become practically involved in the new energy economy. Both talks highlighted the role to be played by ammonia while also describing competing and complementary technologies.

Article

Ammonia Turbine Power Generation with Reduced NOx

A common concern with ammonia fuel is that NOx emissions will be too high to control. However, in new research from Turkey, USA, and Japan, presented at this year's NH3 Fuel Conference in September 2016, two things became clear. First, NOx emissions can be reduced to less than 10ppm by employing good engineering design and exploiting the chemical properties of ammonia, which plays a dual role as both the fuel and the emissions-cleanup agent. Second, the deployment of ammonia-fueled turbines for power generation is not only feasible, but actively being developed, with demonstration units running today and improved demonstration projects currently in development.

Article

IHI Breaks Ground on Hydrogen Research Facility

Japanese capital goods manufacturer IHI Corporation announced last month that it has started construction of a 1,000 square-meter hydrogen research facility in Fukushima Prefecture.  The facility will be an addition to IHI’s Green Energy Center in Soma City which was launched in 2018.  One of the Center’s original focuses is the production steps of the green hydrogen supply chain using solar electricity to power developmental electrolyzers.  The new facility will focus on hydrogen carriers, including ammonia and methane (via “methanation” of carbon dioxide), that can be used in the logistics steps of the supply chain.

Article

JGC Corporation demonstrates “world’s first” carbon-free ammonia energy cycle

In late 2018, JGC Corporation issued a press release to celebrate a "world's first" in ammonia energy, demonstrating at its pilot plant in Koriyama both "synthesis of ammonia with hydrogen produced through the electrolysis of water by renewable energy, and generation of electricity through gas turbines fueled by synthesized ammonia." By demonstrating the feasibility of using ammonia on both sides of the renewable energy equation -- first, producing green ammonia from intermittent renewable electricity and, second, combusting this carbon-free fuel for power generation -- the project demonstrates the role of ammonia in the "establishment of an energy chain ... that does not emit CO2 (CO2-free) from production to power generation."

Article

Green ammonia demonstration plants now operational, in Oxford and Fukushima

Two new pilot projects for producing "green ammonia" from renewable electricity are now up and running and successfully producing ammonia. In April 2018, the Ammonia Manufacturing Pilot Plant for Renewable Energy started up at the Fukushima Renewable Energy Institute - AIST (FREA) in Japan. Earlier this week, Siemens launched operations at its Green Ammonia Demonstrator, at the Rutherford Appleton Laboratory outside Oxford in the UK. The commercial product coming out of these plants is not ammonia, however, it is knowledge. While both the FREA and Siemens plants are of similar scale, with respective ammonia capacities of 20 and 30 kg per day, they have very different objectives. At FREA, the pilot project supports catalyst development with the goal of enabling efficient low-pressure, low-temperature ammonia synthesis. At Siemens, the pilot will provide insights into the business case for ammonia as a market-flexible energy storage vector.

Article

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Article

SIP “Energy Carriers” video: ammonia turbines, industrial furnaces, fuel cells

To demonstrate the progress of the SIP "Energy Carriers" program, the Japan Science and Technology Agency last week released a video, embedded below, that shows three of its ammonia fuel research and development projects in operation. R&D is often an abstract idea: this video shows what it looks like to generate power from ammonia. As it turns out, fuel cells aren't hugely photogenic. Nonetheless, if a picture is worth a thousand words, this will be a long article.

Article

Progress toward Ammonia-to-Hydrogen Conversion at H2 Fueling Stations

In the last 12 months ... Groups in Australia, Japan, Denmark, the U.K., and the U.S. all made progress with technologies that can be used to convert ammonia to hydrogen at fueling stations. This means that hydrogen for fuel cell vehicles can be handled as ammonia from the point of production to the point of dispensing.

Article

Green Ammonia Consortium: Bright Prospects in Japan for Ammonia as an Energy Carrier

In the last 12 months ... In July 2017, 19 companies and three research institutions came together to form the Green Ammonia Consortium. Before this development, it was unclear whether ammonia would find a significant role in Japan’s hydrogen economy. In the wake of this announcement, however, ammonia seems to have claimed the leading position in the race among potential energy carriers.

Article

Kawasaki Moving Ahead with LH2 Tanker Project

Kawasaki Heavy Industries (KWI) is moving ahead with plans for a “liquefied hydrogen carrier ship,” as reported by at least two Japanese news outlets since July.  This means that the groups backing each of the energy carriers included within Japan’s Cross-Ministerial Strategic Innovation Promotion Program (SIP) have all made significant moves ahead of the program’s termination at the end of 2018.  On July 25, 2017 the Japan Science and Technology Agency (JST) announced that a collection of companies and research institutions had come together to form the Green Ammonia Consortium.  On July 27, 2017, Chiyoda Corporation announced that work was starting on a demonstration project that will transport hydrogen from Brunei to Japan using liquid organic hydride carrier technology. 

Article

Major Development for Ammonia Energy in Japan

On July 25, the Japan Science and Technology Agency (JST) announced that a collection of companies and research institutions had come together to form a Green Ammonia Consortium.  The 22-member group will take over responsibility for the ammonia aspect of the Cross-Ministerial Strategic Innovation Program (SIP) Energy Carriers agenda when the SIP is discontinued at the end of fiscal 2018.  A JST press release states that the Consortium intends to develop a strategy for “forming [an] ammonia value chain,” promote demonstration projects that can further commercialization, and enable “Japanese industry to lead the world market.”

Article

The Ammonia Economy at the ACS National Meeting

The American Chemical Society (ACS) has published the program for its 2017 National Meeting, which takes place next month in Washington DC and includes a session dedicated to the "Ammonia Economy." The first day of the week-long meeting, Sunday August 20th, will feature a full morning of technical papers from the US, UK, and Japan, covering ammonia energy topics across three general areas: producing hydrogen from ammonia, developing new catalysts for ammonia synthesis and oxidation, and storing ammonia in solid chemical form.

Article

Ammonia-Fueled Gas Turbine Power Generation

Hideaki Kobayashi, professor at the Institute of Fluid Science at Tohoku University in Sendai, Japan, has developed the world’s first technology for direct combustion of ammonia in a gas turbine. The advance was made in cooperation with the National Institute of Advanced Industrial Science and Technology (AIST) under a program led by Norihiko Iki.

Article

On the Ground in Japan

Two talks delivered in December show the tiny steps that allow a country to transition to a sustainable energy economy. The country is Japan. The events hosting the talks were short-format symposia whose evident objective was to draw in business and technical people who might become practically involved in the new energy economy. Both talks highlighted the role to be played by ammonia while also describing competing and complementary technologies.

Article

Ammonia Turbine Power Generation with Reduced NOx

A common concern with ammonia fuel is that NOx emissions will be too high to control. However, in new research from Turkey, USA, and Japan, presented at this year's NH3 Fuel Conference in September 2016, two things became clear. First, NOx emissions can be reduced to less than 10ppm by employing good engineering design and exploiting the chemical properties of ammonia, which plays a dual role as both the fuel and the emissions-cleanup agent. Second, the deployment of ammonia-fueled turbines for power generation is not only feasible, but actively being developed, with demonstration units running today and improved demonstration projects currently in development.

Paper

Demonstration and Optimization of Green Ammonia Production Operation Responding to Fluctuating Hydrogen Production from Renewable Energy

Ammonia is a promising hydrogen carrier to transport green hydrogen from overseas to Japan at lower cost and resulting in lower lifecycle CO2 emission. Low carbon ammonia will be produced by fossil fuel reforming with CCS or EOR at the early stage of the introduction of ammonia fuel to the market. Green ammonia production from renewable sources is the ultimate goal, but there are some issues to commercialize. The low capacity factor, which is caused by the fluctuation of solar irradiation or wind speed, is a big issue which leads to ammonia production costs. In this presentation, we would like…

Paper

Pure Ammonia Combustion Micro Gas Turbine System

To protect against global warming, a massive influx of renewable energy is expected. Although hydrogen is a renewable media, its storage and transportation in large quantity has some problems. Ammonia fuel, however, is a hydrogen energy carrier and carbon-free fuel, and its storage and transportation technology is already established. In the 1960s, development of ammonia combustion gas turbines was abandoned because combustion efficiency was unacceptably low [1]. Recent demand for hydrogen energy carriers has revived the interest in ammonia as fuel [2, 3]. In 2015, ammonia-combustion gas turbine power generation was reported in Japan using a 50-kW class micro gas…

Paper

Effect of Preparation Condition on Ammonia Synthesis over Ru/CeO

Development of the hydrogen carrier system is of great interest to utilization of renewable energy. To store renewable energy, especially for the electricity from photovoltaic and wind turbine, fluctuation of the generated electricity is not appropriate for the stable supply of the electric power. Also, the hydrogen production by the water electrolysis with the fluctuating electricity results in the fluctuation of hydrogen production. When we store the hydrogen derived from renewable energy in the carrier compounds, it is necessary to consider the reduction or smoothing of fluctuation in the hydrogen flow rate as a feed of chemical process. Although the…

Paper

Synthesis and Assessment of Process Systems for Production of Ammonia Using Nitric Oxide in Combustion Exhaust Gas

Recently, ammonia is regarded as an alternative fuel without carbon dioxide (CO2). Numerous studies have been performed using ammonia as a fuel. Iki and Kurata confirmed the working of a prototype for the ammonia gas turbine, where ammonia burned in an environmentally benign way to generate electricity, exhausting only water and nitrogen [1]. From the view of cycle of ammonia for the development of a society with low carbon, it is required to synthesize carbon-free ammonia (green ammonia) in small plants. This green ammonia can be synthesized using renewable energy, with hydrogen from electrolysis of water and nitrogen from pressure…