Gold Member

Proton Ventures

Article

Koolen Industries invests in Proton Ventures

MEMBER NEWS: In November 2019, AEA Gold Member Proton Ventures announced that it had secured a 4 million Euro investment from Dutch "clean energy conglomerate" Koolen Industries.

Article

Strategic collaboration announced between Proton Ventures and Duiker Combustion Engineers

This week, two industry members of the Ammonia Energy Association announced that they have launched a "strategic collaboration." Coming from opposite ends of the ammonia energy value chain, one specialized in production and the other in combustion, this new partnership allows the two companies to "complete the chain of using ammonia as an energy solution."

Article

NH3 Event in Rotterdam, June 6-7

This year's ammonia conference in Rotterdam, the third annual NH3 Event, begins two weeks from today. Since our guest post in March, announcing the initial roster of conference speakers, the organizers have confirmed new speakers, added more sessions, and announced further details. The NH3 Event is a two-day conference, taking place on June 6 & 7, presenting "state of the art solutions and innovations on the subject of Sustainable Ammonia." Although the conference hall is already close to capacity, a few dozen tickets remain available through the NH3 Event website.

Article

NH3 Event announces big names for third annual Rotterdam conference

After two successful years, the NH3 Event returns on June 6 & 7 in Rotterdam, the Netherlands, for the third edition. Ammonia is still an underestimated route to achieving a sustainable energy economy. At the NH3 Event, members of the energy community, including the public, NGOs, policy-makers, industries, and academics — including well-known experts, developers, and scientists — gather to present the latest research results and commercial achievements, and to discuss new application fields and business prospects for ammonia in energy solutions. And this year with very interesting names!

Article

Battolyser update: combined battery-electrolyzer technology wins industry contest, targets TRL8 in 2020

Dutch start-up Battolyser BV was today declared the winner of Industrial Energy Enlightenmentz 2018. The award was announced at the annual Industry & Energy event, held at the Brightlands Chemelot Campus in Geleen, which this year focused on the theme When Electrons Power Molecules. At the NH3 Energy+ Topical Conference last month, Hans Vrijenhoef of Proton Ventures gave the opening presentation, co-authored by Fokko Mulder of TU Delft, in which he described the battolyser's robust combination battery and electrolyzer. He also mapped out Battolyser BV's technology development and investment pathway, beginning with the kW-scale pilot plant that is already underway and expected to be operational by Spring 2019, and a MW-scale, modular, containerized plant which should be complete by the end of 2020. Reaching a technology readiness level of TRL8, Battolyser BV then aims to increase industrial scale swiftly, demonstrating a 100 MW unit by 2025 and a 1 GW battolyser by 2030.

Article

NH3 Energy Implementation Conference: A Brief Report

The 2018 NH3 Energy Implementation Conference, the first of its kind, took place on November 1 in Pittsburgh, Pennsylvania in the U.S. The focus of the Conference was on steps – current and future – that will lead to implementation of ammonia energy in the global economy.  At the highest level, the Conference results validated the relevance and timeliness of the theme.  In the words of closing speaker Grigorii Soloveichik, Director of the U.S. Department of Energy’s ARPA-E REFUEL Program, the Conference strengthened his confidence that “ammonia is a great energy carrier ... with billions of dollars of potential in prospective markets.”

Article

Affiliated NH3 Groups Become a Force for Advocacy

In the last 12 months ... The vision of a worldwide network of affiliated ammonia energy advocacy groups drew closer to reality.  This a step toward fulfillment of a goal that was conceived in 2016 when the NH3 Fuel Association convened a Global Advisory Board.  The idea was to launch a body that “could help ammonia energy proponents in different countries organize nationally or regionally focused ammonia energy advocacy bodies.”  Over the last year, all four of the Advisory Board’s 'Ambassadors' played leadership roles on behalf of ammonia energy in their respective countries.

Article

Maritime Industry Targets Ammonia Fuel to Decarbonize Shipping

In the last 12 months ... The International Maritime Organization issued its Initial GHG Strategy, committing the global shipping industry to emission reductions that cannot be achieved with carbon-based fuels. This single action is the regulatory trigger that unleashes a three-decade transition to carbon-free liquid fuels like ammonia. The target date for this 50% reduction in emissions is 2050 but, given the long economic life of ocean vessels, the transition must begin immediately.

Article

Small-scale ammonia: where the economics work and the technology is ready

The movement toward small-scale ammonia is accelerating for two reasons. First, small ammonia plants are flexible. And, second, small ammonia plants are flexible. They are feedstock-flexible, meaning that they can use the small quantities of low-value or stranded resources that are widely available at a local scale. This includes flared natural gas, landfill gas, or wind power. And they are market-flexible, meaning that they can serve various local needs, selling products like fertilizer, energy storage, or fuel; or services like resource independence, price stability, or supply chain robustness. While the scale of these plants is small, the impact of this technology is big. As industry-insider publication Nitrogen+Syngas explained in its last issue, "as ammonia production moves toward more sustainable and renewable feedstocks the ammonia market is facing a potentially radical change."

Article

Ammonia as a Renewable Fuel for the Maritime Industry

Last week, I wrote about a crucial new report that discusses four fuel technologies: batteries, hydrogen, ammonia, and nuclear. These could reduce the shipping sector's emissions in line with targets set in the IMO's Initial GHG Strategy. The report, Reducing CO2 Emissions to Zero, concludes that "all industry stakeholders ... need to get on with the job of developing zero CO2 fuels." This call to action should be consequential: it comes from the International Chamber of Shipping, an influential industry group that represents "more than 80% of the world merchant fleet." This week, I provide an example of the kind of research required, with an update on a project that aims to demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fueled by its own cargo." Although this project is still in its early days, I want to highlight three aspects that I believe will be crucial to its success. First, the work is being done by a consortium, bringing together many industry stakeholders, each with its own expertise and commercial interests. Second, the scope of research extends beyond conventional engine configurations to include not just new fuels but also new technology combinations; in other words, rather than assess new fuels in old engines, it aims to develop optimized propulsion designs for zero-emission fuels. And, third, its consideration of ammonia as a fuel begins with a comprehensive safety analysis.

Article

Battolyser Attracts Grant Funding, Corporate Support

The kernel of the story is this: Battolyser B.V. is taking a step forward with the battolyser, its eponymous energy storage technology.  On June 12, Battolyser’s joint venture partners Delft University of Technology (TU Delft) and Proton Ventures announced that they had secured a €480,000 grant from Waddenfonds, a Dutch public-sector funding agency, to build a 15 kW/60 kWh version of the battolyser.  The installation will take place at Nuon’s Magnum generating station at Eemshaven in the Netherlands.  The move makes tangible the vision of the battolyser as an integral part of an energy supply system with a robust quota of renewably generated electricity. The battolyser is a battery that stores electricity in the conventional galvanic manner until it is fully charged.  At that point, the device uses any additional electricity supplied for the electrolysis of water and evolution of hydrogen.  If the device is integrated with hydrogen buffer storage and an ammonia production train, the result will be a versatile and highly scalable energy storage system that can provide highly responsive grid support on all time scales from seconds to months.  (Ammonia Energy last posted on the battolyser on March 1, 2018.)

Article

All together now: every major ammonia technology licensor is working on renewable ammonia

The second annual Power to Ammonia conference, which took place earlier this month in Rotterdam, was a tremendous success. It was again hosted by Proton Ventures, the Dutch engineering firm and mini-ammonia-plant pioneer, and had roughly twice as many attendees as last year with the same extremely high quality of presentations (it is always an honor for me to speak alongside the technical wizards and economic innovators who represent the world of ammonia energy). However, for me, the most exciting part of this year's event was the fact that, for the first time at an ammonia energy conference, all four of the major ammonia technology licensors were represented. With Casale, Haldor Topsoe, ThyssenKrupp, and KBR all developing designs for integration of their ammonia synthesis technologies with renewable powered electrolyzers, green ammonia is now clearly established as a commercial prospect.

Article

Battolyser B.V. Formed in the Netherlands

Proton Ventures and Delft University of Technology (TU Delft), both of the Netherlands, announced in early February the formation of a new company, Battolyser B.V.  The company’s initial goal is to build and demonstrate a pilot version of the eponymous technology that stores electricity and produces hydrogen.  Hans Vrijenhoef, who will direct the new company, indicated that a fully realized system would include an ammonia production train so that the hydrogen could be stored and transported at low cost.  Vrijenhoef is already the Director of Proton Ventures B.V., a member of the NH3 Fuel Association’s Global Federation Advisory Board, and the originator of the NH3 Event power-to-ammonia conference.

Article

Pilot project: an ammonia tanker fueled by its own cargo

Last month, an important new consortium in the Netherlands announced its intention to research and demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fuelled by its own cargo." This two-year project will begin with theoretical and laboratory studies, and it will conclude with a pilot-scale demonstration of zero-emission marine propulsion using ammonia fuel in either an internal combustion engine or a fuel cell.

Article

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Article

The capital intensity of small-scale ammonia plants

The list of investment drivers for building new ammonia plants in the US over the last few years was short, beginning and ending with cheap natural gas. Markets change, however, and the investment drivers for the next generation of new ammonia plants might include low cost electrolyzers, low cost renewable power, carbon taxes, and global demand for ammonia as a carbon-free energy vector. For this to make sense, however, ammonia needs to be produced without fossil fuel inputs. This is perfectly possible using Haber-Bosch technology with electrolyzers, but today's wind and solar power plants exist on a smaller scale than could support a standard (very big) Haber-Bosch plant. So, to produce renewable ammonia, small-scale ammonia production is essential. This time series chart shows the capital intensity of today’s ammonia plants. Together, the data illustrate competitive advantages of alternative investment strategies, and demonstrate a shift away from the prior trend toward (and received wisdom of) monolithic mega-plants that rely on a natural gas feedstock.

Article

Green ammonia demonstration plant in The Netherlands

Last month, a heavyweight consortium of local and global companies announced plans to collaborate on a project to design, build, operate, and evaluate a demonstration plant to produce "green ammonia" from water, air, and renewable energy in The Netherlands. This is one practical outcome of last year's Power-to-Ammonia study, which examined the economic and technical feasibility of using tidal power off the island of Goeree-Overflakkee in Zuid-Holland to power a 25 MWe electrolyzer unit, and feed renewable hydrogen to a 20,000 ton per year green ammonia plant. This new demonstration plant phase of the project will still be led by the original developer, Dutch mini-ammonia plant developer Proton Ventures. However, its partners in the venture now include Yara and Siemens, as well as speciality fertilizer producer Van Iperen, and local sustainable agricultural producer, the Van Peperstraten Groep.

Article

2nd European Sustainable Ammonia Conference Announced

Last month the NH3 event Europe Foundation released a “call for papers” for the 2nd European Conference on Sustainable Ammonia Solutions.  The conference will take place in Rotterdam on May 17 and 18, 2018, almost exactly a year after the 1st Conference. This is further fulfillment of a vision articulated by Hans Vrijenhoef, Managing Director of Proton Ventures in the Netherlands, during the formation of the NH3 Fuel Association’s Global Ammonia Energy Federation (GAEF) in 2016.  In Vrijenhoef’s view, the rising level of activity and interest in ammonia energy created a compelling opportunity and need for a European conference.

Article

Renewable Hydrogen in Fukushima and a Bridge to the Future

On August 1, 2017 the Japan Government’s New Energy and Industrial Technology Development Organization (NEDO) announced that it will proceed with funding for the construction of a hydrogen production plant in Namie Township, about ten kilometers from the site of the Fukushima nuclear disaster.  The project’s budget is not mentioned, but the installation is projected to be “the largest scale in the world” -- in other words, a real bridge to the future and not a demonstration project.  The project no doubt has a variety of motivations, not least the symbolic value of a renewable hydrogen plant rising in the shadow of the Fukushima Daiichi nuclear station.  In economic terms, though, it appears to be a dead end.  This is unfortunate because a similarly conceived project based on ammonia could be a true bridge-building step that aligns with leading-edge developments elsewhere in the world.

Article

Power-to-Ammonia: the Economic Viability of Ammonia Energy

In the last 12 months ... The extensive Power-to-Ammonia feasibility study demonstrated that ammonia energy could be economically viable in different business cases. The report was a collaborative effort by large European corporations - power companies, electricity distributors, chemical producers, engineering firms - and it has already resulted in plans for one 440 MW power plant to be converted to carbon-free fuel by 2023.

Article

NH3 Fuel Association Announces Charter Sponsors

The NH3 Fuel Association (NH3FA) has released the names of the organization’s charter group of sponsors. The common thread that unites the six companies? A conviction that ammonia energy represents a significant opportunity for their businesses. The sponsors are Yara, Nel Hydrogen, Airgas, Haldor Topsoe, Casale, and Terrestrial Energy.

Article

Power to Ammonia: The OCI Nitrogen – Geleen case

The Power-to-Ammonia feasibility study includes an assessment of the costs and benefits of producing ammonia from renewable energy at OCI Nitrogen's existing production site in Geleen. Of all the companies who joined forces in the Power-to-Ammonia project, OCI is the only ammonia producer. Its business case for making carbon-free ammonia is especially interesting therefore: not just because of the company's deep understanding of the ammonia market and available technologies, but also because it faces corporate exposure to the financial, operational, and social risks of relying upon a fossil-fueled technology in a carbon constrained future.

Article

Power to Ammonia: The Stedin – Goeree-Overflakkee case

Goeree-Overflakkee, in the southwest corner of The Netherlands, already produces more renewable power than it can consume. But, by 2020, this small island will generate a full 300 MWe of solar and wind, which far "exceeds the electricity demand on the island, rated at maximum 30 MWe peak." Stedin, the local grid operator, has the expensive task of integrating these and future renewable resources into its electricity distribution system. The recent Power-to-Ammonia study included a detailed analysis of Stedin's business case for producing renewable ammonia as a way to store and transport this electricity - enabling the island to become a net exporter of clean energy.

Article

Power to Ammonia feasibility study

The Institute for Sustainable Process Technology has just published a feasibility study that represents a major step toward commercializing renewable ammonia. It examines the "value chains and business cases to produce CO2-free ammonia," analysing the potential for commercial deployment at three companies with existing sites in The Netherlands: Nuon at Eemshaven, Stedin at Goeree-Overflakkee, and OCI Nitrogen at Geleen. The project is called Power to Ammonia.

Article

Ammonia Energy Conference Announced for Europe

Proton Ventures announced today that the “1st European Conference on Sustainable Ammonia Solutions” will take place on the 18th and 19th of May. The conference will be held at the RDM Congrescentrum in Rotterdam in the Netherlands.

Article

Nuon’s Power-to-Ammonia update, and the first European ammonia fuel conference in 2017

An article in the latest issue of Dutch-language magazine NPT Proces Technologie provides a detailed update on the Nuon project, about which we wrote a few months ago. Nuon's Power-to-Ammonia project looks at grid-scale storage of "seasonal surplus" electricity from wind and solar in the form of ammonia. Proton Ventures, the originators of the Power-to-Ammonia concept in The Netherlands, have also been sharing details of the project in recent conference presentations - and announced that they will be hosting the first European ammonia fuel conference, in Rotterdam, in May 2017.

Article

Nuon – Power to Ammonia

In March 2016 the Dutch utility Nuon announced that it will study the possibility of storing "seasonal surplus" electricity from wind and solar in the form of ammonia. The study by Nuon and Delft University of Technology (TU Delft) is part of the project "Power to Ammonia." The study will be conducted at Nuon's Magnum power station.

Article

Koolen Industries invests in Proton Ventures

MEMBER NEWS: In November 2019, AEA Gold Member Proton Ventures announced that it had secured a 4 million Euro investment from Dutch "clean energy conglomerate" Koolen Industries.

Article

Strategic collaboration announced between Proton Ventures and Duiker Combustion Engineers

This week, two industry members of the Ammonia Energy Association announced that they have launched a "strategic collaboration." Coming from opposite ends of the ammonia energy value chain, one specialized in production and the other in combustion, this new partnership allows the two companies to "complete the chain of using ammonia as an energy solution."

Article

NH3 Event in Rotterdam, June 6-7

This year's ammonia conference in Rotterdam, the third annual NH3 Event, begins two weeks from today. Since our guest post in March, announcing the initial roster of conference speakers, the organizers have confirmed new speakers, added more sessions, and announced further details. The NH3 Event is a two-day conference, taking place on June 6 & 7, presenting "state of the art solutions and innovations on the subject of Sustainable Ammonia." Although the conference hall is already close to capacity, a few dozen tickets remain available through the NH3 Event website.

Article

NH3 Event announces big names for third annual Rotterdam conference

After two successful years, the NH3 Event returns on June 6 & 7 in Rotterdam, the Netherlands, for the third edition. Ammonia is still an underestimated route to achieving a sustainable energy economy. At the NH3 Event, members of the energy community, including the public, NGOs, policy-makers, industries, and academics — including well-known experts, developers, and scientists — gather to present the latest research results and commercial achievements, and to discuss new application fields and business prospects for ammonia in energy solutions. And this year with very interesting names!

Article

Battolyser update: combined battery-electrolyzer technology wins industry contest, targets TRL8 in 2020

Dutch start-up Battolyser BV was today declared the winner of Industrial Energy Enlightenmentz 2018. The award was announced at the annual Industry & Energy event, held at the Brightlands Chemelot Campus in Geleen, which this year focused on the theme When Electrons Power Molecules. At the NH3 Energy+ Topical Conference last month, Hans Vrijenhoef of Proton Ventures gave the opening presentation, co-authored by Fokko Mulder of TU Delft, in which he described the battolyser's robust combination battery and electrolyzer. He also mapped out Battolyser BV's technology development and investment pathway, beginning with the kW-scale pilot plant that is already underway and expected to be operational by Spring 2019, and a MW-scale, modular, containerized plant which should be complete by the end of 2020. Reaching a technology readiness level of TRL8, Battolyser BV then aims to increase industrial scale swiftly, demonstrating a 100 MW unit by 2025 and a 1 GW battolyser by 2030.

Article

NH3 Energy Implementation Conference: A Brief Report

The 2018 NH3 Energy Implementation Conference, the first of its kind, took place on November 1 in Pittsburgh, Pennsylvania in the U.S. The focus of the Conference was on steps – current and future – that will lead to implementation of ammonia energy in the global economy.  At the highest level, the Conference results validated the relevance and timeliness of the theme.  In the words of closing speaker Grigorii Soloveichik, Director of the U.S. Department of Energy’s ARPA-E REFUEL Program, the Conference strengthened his confidence that “ammonia is a great energy carrier ... with billions of dollars of potential in prospective markets.”

Article

Affiliated NH3 Groups Become a Force for Advocacy

In the last 12 months ... The vision of a worldwide network of affiliated ammonia energy advocacy groups drew closer to reality.  This a step toward fulfillment of a goal that was conceived in 2016 when the NH3 Fuel Association convened a Global Advisory Board.  The idea was to launch a body that “could help ammonia energy proponents in different countries organize nationally or regionally focused ammonia energy advocacy bodies.”  Over the last year, all four of the Advisory Board’s 'Ambassadors' played leadership roles on behalf of ammonia energy in their respective countries.

Article

Maritime Industry Targets Ammonia Fuel to Decarbonize Shipping

In the last 12 months ... The International Maritime Organization issued its Initial GHG Strategy, committing the global shipping industry to emission reductions that cannot be achieved with carbon-based fuels. This single action is the regulatory trigger that unleashes a three-decade transition to carbon-free liquid fuels like ammonia. The target date for this 50% reduction in emissions is 2050 but, given the long economic life of ocean vessels, the transition must begin immediately.

Article

Small-scale ammonia: where the economics work and the technology is ready

The movement toward small-scale ammonia is accelerating for two reasons. First, small ammonia plants are flexible. And, second, small ammonia plants are flexible. They are feedstock-flexible, meaning that they can use the small quantities of low-value or stranded resources that are widely available at a local scale. This includes flared natural gas, landfill gas, or wind power. And they are market-flexible, meaning that they can serve various local needs, selling products like fertilizer, energy storage, or fuel; or services like resource independence, price stability, or supply chain robustness. While the scale of these plants is small, the impact of this technology is big. As industry-insider publication Nitrogen+Syngas explained in its last issue, "as ammonia production moves toward more sustainable and renewable feedstocks the ammonia market is facing a potentially radical change."

Article

Ammonia as a Renewable Fuel for the Maritime Industry

Last week, I wrote about a crucial new report that discusses four fuel technologies: batteries, hydrogen, ammonia, and nuclear. These could reduce the shipping sector's emissions in line with targets set in the IMO's Initial GHG Strategy. The report, Reducing CO2 Emissions to Zero, concludes that "all industry stakeholders ... need to get on with the job of developing zero CO2 fuels." This call to action should be consequential: it comes from the International Chamber of Shipping, an influential industry group that represents "more than 80% of the world merchant fleet." This week, I provide an example of the kind of research required, with an update on a project that aims to demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fueled by its own cargo." Although this project is still in its early days, I want to highlight three aspects that I believe will be crucial to its success. First, the work is being done by a consortium, bringing together many industry stakeholders, each with its own expertise and commercial interests. Second, the scope of research extends beyond conventional engine configurations to include not just new fuels but also new technology combinations; in other words, rather than assess new fuels in old engines, it aims to develop optimized propulsion designs for zero-emission fuels. And, third, its consideration of ammonia as a fuel begins with a comprehensive safety analysis.

Article

Battolyser Attracts Grant Funding, Corporate Support

The kernel of the story is this: Battolyser B.V. is taking a step forward with the battolyser, its eponymous energy storage technology.  On June 12, Battolyser’s joint venture partners Delft University of Technology (TU Delft) and Proton Ventures announced that they had secured a €480,000 grant from Waddenfonds, a Dutch public-sector funding agency, to build a 15 kW/60 kWh version of the battolyser.  The installation will take place at Nuon’s Magnum generating station at Eemshaven in the Netherlands.  The move makes tangible the vision of the battolyser as an integral part of an energy supply system with a robust quota of renewably generated electricity. The battolyser is a battery that stores electricity in the conventional galvanic manner until it is fully charged.  At that point, the device uses any additional electricity supplied for the electrolysis of water and evolution of hydrogen.  If the device is integrated with hydrogen buffer storage and an ammonia production train, the result will be a versatile and highly scalable energy storage system that can provide highly responsive grid support on all time scales from seconds to months.  (Ammonia Energy last posted on the battolyser on March 1, 2018.)

Article

All together now: every major ammonia technology licensor is working on renewable ammonia

The second annual Power to Ammonia conference, which took place earlier this month in Rotterdam, was a tremendous success. It was again hosted by Proton Ventures, the Dutch engineering firm and mini-ammonia-plant pioneer, and had roughly twice as many attendees as last year with the same extremely high quality of presentations (it is always an honor for me to speak alongside the technical wizards and economic innovators who represent the world of ammonia energy). However, for me, the most exciting part of this year's event was the fact that, for the first time at an ammonia energy conference, all four of the major ammonia technology licensors were represented. With Casale, Haldor Topsoe, ThyssenKrupp, and KBR all developing designs for integration of their ammonia synthesis technologies with renewable powered electrolyzers, green ammonia is now clearly established as a commercial prospect.

Article

Battolyser B.V. Formed in the Netherlands

Proton Ventures and Delft University of Technology (TU Delft), both of the Netherlands, announced in early February the formation of a new company, Battolyser B.V.  The company’s initial goal is to build and demonstrate a pilot version of the eponymous technology that stores electricity and produces hydrogen.  Hans Vrijenhoef, who will direct the new company, indicated that a fully realized system would include an ammonia production train so that the hydrogen could be stored and transported at low cost.  Vrijenhoef is already the Director of Proton Ventures B.V., a member of the NH3 Fuel Association’s Global Federation Advisory Board, and the originator of the NH3 Event power-to-ammonia conference.

Article

Pilot project: an ammonia tanker fueled by its own cargo

Last month, an important new consortium in the Netherlands announced its intention to research and demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fuelled by its own cargo." This two-year project will begin with theoretical and laboratory studies, and it will conclude with a pilot-scale demonstration of zero-emission marine propulsion using ammonia fuel in either an internal combustion engine or a fuel cell.

Article

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Article

The capital intensity of small-scale ammonia plants

The list of investment drivers for building new ammonia plants in the US over the last few years was short, beginning and ending with cheap natural gas. Markets change, however, and the investment drivers for the next generation of new ammonia plants might include low cost electrolyzers, low cost renewable power, carbon taxes, and global demand for ammonia as a carbon-free energy vector. For this to make sense, however, ammonia needs to be produced without fossil fuel inputs. This is perfectly possible using Haber-Bosch technology with electrolyzers, but today's wind and solar power plants exist on a smaller scale than could support a standard (very big) Haber-Bosch plant. So, to produce renewable ammonia, small-scale ammonia production is essential. This time series chart shows the capital intensity of today’s ammonia plants. Together, the data illustrate competitive advantages of alternative investment strategies, and demonstrate a shift away from the prior trend toward (and received wisdom of) monolithic mega-plants that rely on a natural gas feedstock.

Article

Green ammonia demonstration plant in The Netherlands

Last month, a heavyweight consortium of local and global companies announced plans to collaborate on a project to design, build, operate, and evaluate a demonstration plant to produce "green ammonia" from water, air, and renewable energy in The Netherlands. This is one practical outcome of last year's Power-to-Ammonia study, which examined the economic and technical feasibility of using tidal power off the island of Goeree-Overflakkee in Zuid-Holland to power a 25 MWe electrolyzer unit, and feed renewable hydrogen to a 20,000 ton per year green ammonia plant. This new demonstration plant phase of the project will still be led by the original developer, Dutch mini-ammonia plant developer Proton Ventures. However, its partners in the venture now include Yara and Siemens, as well as speciality fertilizer producer Van Iperen, and local sustainable agricultural producer, the Van Peperstraten Groep.

Article

2nd European Sustainable Ammonia Conference Announced

Last month the NH3 event Europe Foundation released a “call for papers” for the 2nd European Conference on Sustainable Ammonia Solutions.  The conference will take place in Rotterdam on May 17 and 18, 2018, almost exactly a year after the 1st Conference. This is further fulfillment of a vision articulated by Hans Vrijenhoef, Managing Director of Proton Ventures in the Netherlands, during the formation of the NH3 Fuel Association’s Global Ammonia Energy Federation (GAEF) in 2016.  In Vrijenhoef’s view, the rising level of activity and interest in ammonia energy created a compelling opportunity and need for a European conference.

Article

Renewable Hydrogen in Fukushima and a Bridge to the Future

On August 1, 2017 the Japan Government’s New Energy and Industrial Technology Development Organization (NEDO) announced that it will proceed with funding for the construction of a hydrogen production plant in Namie Township, about ten kilometers from the site of the Fukushima nuclear disaster.  The project’s budget is not mentioned, but the installation is projected to be “the largest scale in the world” -- in other words, a real bridge to the future and not a demonstration project.  The project no doubt has a variety of motivations, not least the symbolic value of a renewable hydrogen plant rising in the shadow of the Fukushima Daiichi nuclear station.  In economic terms, though, it appears to be a dead end.  This is unfortunate because a similarly conceived project based on ammonia could be a true bridge-building step that aligns with leading-edge developments elsewhere in the world.

Article

Power-to-Ammonia: the Economic Viability of Ammonia Energy

In the last 12 months ... The extensive Power-to-Ammonia feasibility study demonstrated that ammonia energy could be economically viable in different business cases. The report was a collaborative effort by large European corporations - power companies, electricity distributors, chemical producers, engineering firms - and it has already resulted in plans for one 440 MW power plant to be converted to carbon-free fuel by 2023.

Article

NH3 Fuel Association Announces Charter Sponsors

The NH3 Fuel Association (NH3FA) has released the names of the organization’s charter group of sponsors. The common thread that unites the six companies? A conviction that ammonia energy represents a significant opportunity for their businesses. The sponsors are Yara, Nel Hydrogen, Airgas, Haldor Topsoe, Casale, and Terrestrial Energy.

Article

Power to Ammonia: The OCI Nitrogen – Geleen case

The Power-to-Ammonia feasibility study includes an assessment of the costs and benefits of producing ammonia from renewable energy at OCI Nitrogen's existing production site in Geleen. Of all the companies who joined forces in the Power-to-Ammonia project, OCI is the only ammonia producer. Its business case for making carbon-free ammonia is especially interesting therefore: not just because of the company's deep understanding of the ammonia market and available technologies, but also because it faces corporate exposure to the financial, operational, and social risks of relying upon a fossil-fueled technology in a carbon constrained future.

Article

Power to Ammonia: The Stedin – Goeree-Overflakkee case

Goeree-Overflakkee, in the southwest corner of The Netherlands, already produces more renewable power than it can consume. But, by 2020, this small island will generate a full 300 MWe of solar and wind, which far "exceeds the electricity demand on the island, rated at maximum 30 MWe peak." Stedin, the local grid operator, has the expensive task of integrating these and future renewable resources into its electricity distribution system. The recent Power-to-Ammonia study included a detailed analysis of Stedin's business case for producing renewable ammonia as a way to store and transport this electricity - enabling the island to become a net exporter of clean energy.

Article

Power to Ammonia feasibility study

The Institute for Sustainable Process Technology has just published a feasibility study that represents a major step toward commercializing renewable ammonia. It examines the "value chains and business cases to produce CO2-free ammonia," analysing the potential for commercial deployment at three companies with existing sites in The Netherlands: Nuon at Eemshaven, Stedin at Goeree-Overflakkee, and OCI Nitrogen at Geleen. The project is called Power to Ammonia.

Article

Ammonia Energy Conference Announced for Europe

Proton Ventures announced today that the “1st European Conference on Sustainable Ammonia Solutions” will take place on the 18th and 19th of May. The conference will be held at the RDM Congrescentrum in Rotterdam in the Netherlands.

Article

Nuon’s Power-to-Ammonia update, and the first European ammonia fuel conference in 2017

An article in the latest issue of Dutch-language magazine NPT Proces Technologie provides a detailed update on the Nuon project, about which we wrote a few months ago. Nuon's Power-to-Ammonia project looks at grid-scale storage of "seasonal surplus" electricity from wind and solar in the form of ammonia. Proton Ventures, the originators of the Power-to-Ammonia concept in The Netherlands, have also been sharing details of the project in recent conference presentations - and announced that they will be hosting the first European ammonia fuel conference, in Rotterdam, in May 2017.

Article

Nuon – Power to Ammonia

In March 2016 the Dutch utility Nuon announced that it will study the possibility of storing "seasonal surplus" electricity from wind and solar in the form of ammonia. The study by Nuon and Delft University of Technology (TU Delft) is part of the project "Power to Ammonia." The study will be conducted at Nuon's Magnum power station.