Not a current member. Become a member today.

US Department of Energy

Article

Government Investments in Hydrogen: How Does Your Country Compare?

On September 3, the British renewable-energy news portal reNEWS.BIZ ran a story with an intriguing headline: “Scotland launches £3bn green project portfolio.”  At first glance, that number (which equates to USD $3.7 billion) looks out of scale with Scotland’s relatively tiny population of 5.5 million.  Close reading reveals that the £3 billion is not the amount that will be invested by the Scottish government, but rather the value of the “investment portfolio” of green businesses the program is intended to galvanize over the next three years.  But still one wonders, how does £3 billion stack up against other national programs aimed at supporting the sustainability transition?

Article

Japan, U.S., E.U. Agree to Cooperate on Hydrogen

On June 18, Japan, the United States, and the European Union released a joint statement on “future cooperation in hydrogen and fuel cell technologies.”  Represented, respectively, by the Ministry of Energy, Trade, and Industry (METI), the Department of Energy (DoE), and the Directorate-General for Energy (ENER), the jurisdictions pledged “to accelerate the development of sustainable hydrogen and fuel cell technologies in the world.”  A central point of agreement in the statement is “the importance of reducing the cost of hydrogen.”

Article

RAPID: supporting modular manufacturing and process intensification for small-scale ammonia

Using greener feedstocks at low pressures and temperatures, with higher conversion rates and less greenhouse gases is considered a pipe dream. The technology and equipment simply wasn’t available ... until now. The case for small-scale, energy efficient ammonia production is well documented, but access to funds may not be. Now, Manufacturing USA and the Manufacturing Extension Partnership may offer a new path to success.

Article

H2@Scale in California: A Role for Ammonia?

The U.S. Department of Energy H2@Scale program’s November 2017 workshop in California included mention of ammonia as a constituent of a future hydrogen economy. It also highlighted the relevance ammonia energy could have in California. California stands out globally as a large economy that is strongly committed to development of a hydrogen economy. The state’s strategy for hydrogen-powered transportation involves reducing the production cost of renewable hydrogen and the capital and operating costs of hydrogen fueling stations. It does not explicitly address the cost of intermediate hydrogen logistics. The question of cost is of utmost importance because California has so far put $120 million of public funds into hydrogen fueling stations and intends to invest an additional $20 million per year through 2022. The state’s aspiration is to move to a point where hydrogen that is used as a motor fuel is free of public subsidy. So it clearly behooves the state to investigate how ammonia could be used as a cost-reducing energy carrier. Toyota is active in California’s hydrogen movement and has announced plans to build a renewable hydrogen plant that will use cow manure as a feedstock. A project with a different conception, one that draws upon the solar and wind resources of the Mojave Desert to produce renewable hydrogen and logistically advantaged ammonia, would align better with the state’s sustainability objectives.

Article

Future Ammonia Technologies: Electrochemical (part 3)

This series of articles on the future of ammonia synthesis began with a report on the NH3 Energy+ conference presentation by Grigorii Soloveichik, Program Director at the US Department of Energy's ARPA-E, who categorized the technologies as being either improvements on Haber-Bosch or electrochemical (with exceptions). ARPA-E invests in "transformational, high-risk, early-stage research," and recently began funding ammonia synthesis technologies, not to make renewable fertilizer but to produce "energy-dense zero-carbon liquid fuel." This article will introduce the six electrochemical technologies currently in development with funding from ARPA-E.

Article

Future Ammonia Technologies: Electrochemical (part 2)

Last week, in Part 1 of this series on electrochemical ammonia synthesis technologies, I quoted a recent article by researchers at MIT that identified avenues for future research and development. One option was a biomimicry approach, learning from "enzymatic catalysts, such as nitrogenases," which can "either be incorporated into or provide inspiration for the design of electrocatalytic processes." The nitrogenase enzyme, nature's ammonia synthesis technology, was developed in an iterative innovation process, otherwise known as evolution, that took hundreds of millions of years to reach this level of efficiency. According to one group of electrochemists, who presented their results at the recent NH3 Energy+ conference, nitrogenase produces ammonia in nature with an enviable 75% process efficiency - so it's no surprise that they are basing their industrial technology on it.

Article

Progress for Low-Temperature Direct Ammonia Fuel Cells

Speaking at the NH3 Energy+ Topical Conference last month, University of Delaware Adjunct Professor Shimshon Gottesfeld reported on progress made by the university’s direct ammonia fuel cell (DAFC) project. Evidently, the UDel team is now a big step closer to its goal of establishing the DAFC as a viable automotive power plant.

Article

Improvement of Haber-Bosch: Adsorption vs. Absorption

At the recent NH3 Energy+ Topical Conference, Grigorii Soloveichik described the future of ammonia synthesis technologies as a two-way choice: Improvement of Haber-Bosch or Electrochemical Synthesis. Two such Haber-Bosch improvement projects, which received ARPA-E-funding under Soloveichik's program direction, also presented papers at the conference. They each take different approaches to the same problem: how to adapt the high-pressure, high-temperature, constant-state Haber-Bosch process to small-scale, intermittent renewable power inputs. One uses adsorption, the other uses absorption, but both remove ammonia from the synthesis loop, avoiding one of Haber-Bosch's major limiting factors: separation of the product ammonia.

Article

ARPA-E talks advanced hybridization, carbon-neutral liquid fuels

In the race to place the automotive sector on a sustainable footing, the field is dominated by just two horses: battery-electricity and hydrogen fuel cells.  The economic implementation of BEVs is already well underway, with motor companies on track in 2017 to sell more than a million vehicles globally for the first time.  The economic implementation of FCVs is also in progress, albeit at a much earlier stage, and has the backing of major motor companies and public-sector agencies.  Given the huge leads enjoyed by electricity and hydrogen, ammonia is scarcely seen as a contending fuel.  Earlier this month, though, the U.S. Department of Energy’s ARPA-E unit published an interview with two of its program managers that has an intriguing implication: the race is far from over and ammonia may yet break to the front of the pack.

Article

NH3 Fuel Association announces New Sponsor; Evening Reception at AIChE Annual Meeting on November 1st

The NH3 Fuel Association has finalized details of its Sponsors Reception on Wednesday November 1 at the AIChE Annual Meeting in Minneapolis, and has also announced an additional sponsor for the conference: Starfire Energy.

Article

Overcoming the Selectivity Challenge in Electrochemical Ammonia Synthesis

In the last 12 months ... The research community has made great progress toward solving the "selectivity challenge" in electrochemical ammonia synthesis. Although, rather than an actual solution, mostly what we have is a range of sophisticated work-arounds that succeed in making this problem moot.

Article

Development of Direct Ammonia Fuel Cells

In the last 12 months ... Researchers from three continents have pushed the boundaries for direct ammonia fuel cells, setting records in power generation and continuous operation.

Article

Ammonia Energy Gains Recognition from U.S. Department of Energy

In the last 12 months ... Ammonia energy has gained recognition from the United States Department of Energy, in both bottom-up and top-down programs. This establishes ammonia energy in the world’s largest economy as a legitimate target for both public- and private-sector investment.

Article

REFUEL Is Back on Track

The U.S. Department of Energy’s ARPA-E REFUEL Program, whose continued existence seemed to be in doubt two months ago, now appears to be back on track.  Invitations were sent a week ago for the ARPA-E REFUEL Program Kickoff, an event that was originally scheduled for April 25 and 26 in Houston.  It is now scheduled to take place in Denver on August 16, 17, and 18.  Attendance will be by invitation only.

Article

Ammonia Energy at the H2@Scale Workshop

“Carbon-free ammonia needs to be a significant contributor to the H2@Scale initiative.” This was one of the “key takeaways” offered by Steve Szymanski, Director of Business Development at the hydrogen generator company Proton On-Site, during his presentation at the H2@Scale Workshop that was held on May 23-24 at the University of Houston in the U.S. By the time Szymanski left the podium, ammonia energy had moved a good distance from the periphery of the H2@Scale conceptual map toward its center.

Article

The new generation of fuel cells: fast, furious, and flexible

At ARPA-E's recent Energy Innovation Summit in Washington, DC, Program Director Grigorii Soloveichik presented his vision for the future of transportation: hybrid electric vehicles that combine the advantages of both plug-in battery and fuel cell technologies. This "optimal solution" will require a new generation of fuel cell that is "fast, furious, and flexible." Fast, in terms of start-up / shut-down time. Furious, in terms of energy density. And flexible, in terms of fuel choice - specifically sustainable liquid fuels, like ammonia.

Article

US DOE funding research into sustainable ammonia synthesis

The US Department of Energy (DOE) is currently supporting six fundamental research projects that will develop "novel catalysts and mechanisms for nitrogen activation," which it hopes will lead to future sustainable ammonia synthesis technologies. These projects, announced in August 2016 and administered by the Office of Basic Energy Sciences, aim "to investigate some of the outstanding scientific questions in the synthesis of ammonia (NH3) from nitrogen (N2) using processes that do not generate greenhouse gases."

Article

ARPA-E’s vision for carbon neutral liquid fuels

We wrote last month about the US Department of Energy funding ammonia fuel projects through ARPA-E's "REFUEL" program ("Renewable Energy to Fuels through Utilization of Energy-dense Liquids"). Although we introduced the funded projects in both the ammonia synthesis category and the ammonia fuel-use category, the REFUEL project merits further analysis as a whole because it describes a roadmap for the development of ammonia fuel systems, and identifies benchmarks for their commercial success.

Article

REFUEL Ammonia Use-Side Funding Awards

Six of the projects designated for funding by the ARPA-E REFUEL announcement on December 15 involve technologies on the use side of the ammonia energy space. Three focus on generating hydrogen from ammonia. Two focus on fuel cells that convert ammonia to electricity. One project involves both ammonia synthesis and use.

Article

ARPA-E funding for renewable ammonia synthesis technologies

Last week, ARPA-E announced funding for eight technologies that aim to make ammonia from renewable electricity, air, and water. The technological pathways being developed include adaptations of the Haber-Bosch process - seeking improvements in catalysts and absorbents - as well as novel electrochemical processes.

Article

Grand Challenges in Sustainable Ammonia Synthesis – DOE Roundtable Report, 2016

Earlier this year, the US Department of Energy (DOE) hosted a day-long meeting "to explore the scientific challenges associated with discovering alternative, sustainable processes for ammonia production." The report that came out of this roundtable discussion presents the participants' views on "the current state-of-the-art and the potential challenges and research opportunities ... for heterogeneous catalysis and homogeneous and enzyme catalysis."

Article

ARPA-E’s “transformative” ammonia synthesis technologies

The US Department of Energy's Advanced Research Project Agency (ARPA-E) is funding projects with a view to commercializing low- and zero-carbon ammonia synthesis technologies. Grigorii Soloveichik, ARPA-E Program Director, described the aims and challenges of his agency's initiative and introduced the technologies currently in development in his keynote presentation at the recent NH3 Fuel Conference, in September 2016.

Article

US DOE: The REFUEL Project

In April 2016, the United States Department of Energy (DOE) released a Funding Opportunity Announcement (FOA) for its Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL) program. The focus of the program is carbon-neutral liquid fuels (CNLFs). In the DOE’s formulation, CNLFs are to be produced “from air and water using electrical or thermal energy from renewable sources.”

Article

Government Investments in Hydrogen: How Does Your Country Compare?

On September 3, the British renewable-energy news portal reNEWS.BIZ ran a story with an intriguing headline: “Scotland launches £3bn green project portfolio.”  At first glance, that number (which equates to USD $3.7 billion) looks out of scale with Scotland’s relatively tiny population of 5.5 million.  Close reading reveals that the £3 billion is not the amount that will be invested by the Scottish government, but rather the value of the “investment portfolio” of green businesses the program is intended to galvanize over the next three years.  But still one wonders, how does £3 billion stack up against other national programs aimed at supporting the sustainability transition?

Article

Japan, U.S., E.U. Agree to Cooperate on Hydrogen

On June 18, Japan, the United States, and the European Union released a joint statement on “future cooperation in hydrogen and fuel cell technologies.”  Represented, respectively, by the Ministry of Energy, Trade, and Industry (METI), the Department of Energy (DoE), and the Directorate-General for Energy (ENER), the jurisdictions pledged “to accelerate the development of sustainable hydrogen and fuel cell technologies in the world.”  A central point of agreement in the statement is “the importance of reducing the cost of hydrogen.”

Article

RAPID: supporting modular manufacturing and process intensification for small-scale ammonia

Using greener feedstocks at low pressures and temperatures, with higher conversion rates and less greenhouse gases is considered a pipe dream. The technology and equipment simply wasn’t available ... until now. The case for small-scale, energy efficient ammonia production is well documented, but access to funds may not be. Now, Manufacturing USA and the Manufacturing Extension Partnership may offer a new path to success.

Article

H2@Scale in California: A Role for Ammonia?

The U.S. Department of Energy H2@Scale program’s November 2017 workshop in California included mention of ammonia as a constituent of a future hydrogen economy. It also highlighted the relevance ammonia energy could have in California. California stands out globally as a large economy that is strongly committed to development of a hydrogen economy. The state’s strategy for hydrogen-powered transportation involves reducing the production cost of renewable hydrogen and the capital and operating costs of hydrogen fueling stations. It does not explicitly address the cost of intermediate hydrogen logistics. The question of cost is of utmost importance because California has so far put $120 million of public funds into hydrogen fueling stations and intends to invest an additional $20 million per year through 2022. The state’s aspiration is to move to a point where hydrogen that is used as a motor fuel is free of public subsidy. So it clearly behooves the state to investigate how ammonia could be used as a cost-reducing energy carrier. Toyota is active in California’s hydrogen movement and has announced plans to build a renewable hydrogen plant that will use cow manure as a feedstock. A project with a different conception, one that draws upon the solar and wind resources of the Mojave Desert to produce renewable hydrogen and logistically advantaged ammonia, would align better with the state’s sustainability objectives.

Article

Future Ammonia Technologies: Electrochemical (part 3)

This series of articles on the future of ammonia synthesis began with a report on the NH3 Energy+ conference presentation by Grigorii Soloveichik, Program Director at the US Department of Energy's ARPA-E, who categorized the technologies as being either improvements on Haber-Bosch or electrochemical (with exceptions). ARPA-E invests in "transformational, high-risk, early-stage research," and recently began funding ammonia synthesis technologies, not to make renewable fertilizer but to produce "energy-dense zero-carbon liquid fuel." This article will introduce the six electrochemical technologies currently in development with funding from ARPA-E.

Article

Future Ammonia Technologies: Electrochemical (part 2)

Last week, in Part 1 of this series on electrochemical ammonia synthesis technologies, I quoted a recent article by researchers at MIT that identified avenues for future research and development. One option was a biomimicry approach, learning from "enzymatic catalysts, such as nitrogenases," which can "either be incorporated into or provide inspiration for the design of electrocatalytic processes." The nitrogenase enzyme, nature's ammonia synthesis technology, was developed in an iterative innovation process, otherwise known as evolution, that took hundreds of millions of years to reach this level of efficiency. According to one group of electrochemists, who presented their results at the recent NH3 Energy+ conference, nitrogenase produces ammonia in nature with an enviable 75% process efficiency - so it's no surprise that they are basing their industrial technology on it.

Article

Progress for Low-Temperature Direct Ammonia Fuel Cells

Speaking at the NH3 Energy+ Topical Conference last month, University of Delaware Adjunct Professor Shimshon Gottesfeld reported on progress made by the university’s direct ammonia fuel cell (DAFC) project. Evidently, the UDel team is now a big step closer to its goal of establishing the DAFC as a viable automotive power plant.

Article

Improvement of Haber-Bosch: Adsorption vs. Absorption

At the recent NH3 Energy+ Topical Conference, Grigorii Soloveichik described the future of ammonia synthesis technologies as a two-way choice: Improvement of Haber-Bosch or Electrochemical Synthesis. Two such Haber-Bosch improvement projects, which received ARPA-E-funding under Soloveichik's program direction, also presented papers at the conference. They each take different approaches to the same problem: how to adapt the high-pressure, high-temperature, constant-state Haber-Bosch process to small-scale, intermittent renewable power inputs. One uses adsorption, the other uses absorption, but both remove ammonia from the synthesis loop, avoiding one of Haber-Bosch's major limiting factors: separation of the product ammonia.

Article

ARPA-E talks advanced hybridization, carbon-neutral liquid fuels

In the race to place the automotive sector on a sustainable footing, the field is dominated by just two horses: battery-electricity and hydrogen fuel cells.  The economic implementation of BEVs is already well underway, with motor companies on track in 2017 to sell more than a million vehicles globally for the first time.  The economic implementation of FCVs is also in progress, albeit at a much earlier stage, and has the backing of major motor companies and public-sector agencies.  Given the huge leads enjoyed by electricity and hydrogen, ammonia is scarcely seen as a contending fuel.  Earlier this month, though, the U.S. Department of Energy’s ARPA-E unit published an interview with two of its program managers that has an intriguing implication: the race is far from over and ammonia may yet break to the front of the pack.

Article

NH3 Fuel Association announces New Sponsor; Evening Reception at AIChE Annual Meeting on November 1st

The NH3 Fuel Association has finalized details of its Sponsors Reception on Wednesday November 1 at the AIChE Annual Meeting in Minneapolis, and has also announced an additional sponsor for the conference: Starfire Energy.

Article

Overcoming the Selectivity Challenge in Electrochemical Ammonia Synthesis

In the last 12 months ... The research community has made great progress toward solving the "selectivity challenge" in electrochemical ammonia synthesis. Although, rather than an actual solution, mostly what we have is a range of sophisticated work-arounds that succeed in making this problem moot.

Article

Development of Direct Ammonia Fuel Cells

In the last 12 months ... Researchers from three continents have pushed the boundaries for direct ammonia fuel cells, setting records in power generation and continuous operation.

Article

Ammonia Energy Gains Recognition from U.S. Department of Energy

In the last 12 months ... Ammonia energy has gained recognition from the United States Department of Energy, in both bottom-up and top-down programs. This establishes ammonia energy in the world’s largest economy as a legitimate target for both public- and private-sector investment.

Article

REFUEL Is Back on Track

The U.S. Department of Energy’s ARPA-E REFUEL Program, whose continued existence seemed to be in doubt two months ago, now appears to be back on track.  Invitations were sent a week ago for the ARPA-E REFUEL Program Kickoff, an event that was originally scheduled for April 25 and 26 in Houston.  It is now scheduled to take place in Denver on August 16, 17, and 18.  Attendance will be by invitation only.

Article

Ammonia Energy at the H2@Scale Workshop

“Carbon-free ammonia needs to be a significant contributor to the H2@Scale initiative.” This was one of the “key takeaways” offered by Steve Szymanski, Director of Business Development at the hydrogen generator company Proton On-Site, during his presentation at the H2@Scale Workshop that was held on May 23-24 at the University of Houston in the U.S. By the time Szymanski left the podium, ammonia energy had moved a good distance from the periphery of the H2@Scale conceptual map toward its center.

Article

The new generation of fuel cells: fast, furious, and flexible

At ARPA-E's recent Energy Innovation Summit in Washington, DC, Program Director Grigorii Soloveichik presented his vision for the future of transportation: hybrid electric vehicles that combine the advantages of both plug-in battery and fuel cell technologies. This "optimal solution" will require a new generation of fuel cell that is "fast, furious, and flexible." Fast, in terms of start-up / shut-down time. Furious, in terms of energy density. And flexible, in terms of fuel choice - specifically sustainable liquid fuels, like ammonia.

Article

US DOE funding research into sustainable ammonia synthesis

The US Department of Energy (DOE) is currently supporting six fundamental research projects that will develop "novel catalysts and mechanisms for nitrogen activation," which it hopes will lead to future sustainable ammonia synthesis technologies. These projects, announced in August 2016 and administered by the Office of Basic Energy Sciences, aim "to investigate some of the outstanding scientific questions in the synthesis of ammonia (NH3) from nitrogen (N2) using processes that do not generate greenhouse gases."

Article

ARPA-E’s vision for carbon neutral liquid fuels

We wrote last month about the US Department of Energy funding ammonia fuel projects through ARPA-E's "REFUEL" program ("Renewable Energy to Fuels through Utilization of Energy-dense Liquids"). Although we introduced the funded projects in both the ammonia synthesis category and the ammonia fuel-use category, the REFUEL project merits further analysis as a whole because it describes a roadmap for the development of ammonia fuel systems, and identifies benchmarks for their commercial success.

Article

REFUEL Ammonia Use-Side Funding Awards

Six of the projects designated for funding by the ARPA-E REFUEL announcement on December 15 involve technologies on the use side of the ammonia energy space. Three focus on generating hydrogen from ammonia. Two focus on fuel cells that convert ammonia to electricity. One project involves both ammonia synthesis and use.

Article

ARPA-E funding for renewable ammonia synthesis technologies

Last week, ARPA-E announced funding for eight technologies that aim to make ammonia from renewable electricity, air, and water. The technological pathways being developed include adaptations of the Haber-Bosch process - seeking improvements in catalysts and absorbents - as well as novel electrochemical processes.

Article

Grand Challenges in Sustainable Ammonia Synthesis – DOE Roundtable Report, 2016

Earlier this year, the US Department of Energy (DOE) hosted a day-long meeting "to explore the scientific challenges associated with discovering alternative, sustainable processes for ammonia production." The report that came out of this roundtable discussion presents the participants' views on "the current state-of-the-art and the potential challenges and research opportunities ... for heterogeneous catalysis and homogeneous and enzyme catalysis."

Article

ARPA-E’s “transformative” ammonia synthesis technologies

The US Department of Energy's Advanced Research Project Agency (ARPA-E) is funding projects with a view to commercializing low- and zero-carbon ammonia synthesis technologies. Grigorii Soloveichik, ARPA-E Program Director, described the aims and challenges of his agency's initiative and introduced the technologies currently in development in his keynote presentation at the recent NH3 Fuel Conference, in September 2016.

Article

US DOE: The REFUEL Project

In April 2016, the United States Department of Energy (DOE) released a Funding Opportunity Announcement (FOA) for its Renewable Energy to Fuels through Utilization of Energy-dense Liquids (REFUEL) program. The focus of the program is carbon-neutral liquid fuels (CNLFs). In the DOE’s formulation, CNLFs are to be produced “from air and water using electrical or thermal energy from renewable sources.”