Platinum Member

Yara

Article

The fertilizer industry is learning to love green ammonia

ANNUAL REVIEW 2019: Green ammonia is no longer a lonely venture for Yara, which used to appear alone among fertilizer producers in its desire to reduce carbon dioxide emissions from ammonia plants. While dozens of green ammonia demonstration projects and prototype technologies have been demonstrated in recent years, this progress was mostly achieved by energy companies and technology start-ups - and Yara. In the last year, however, fertilizer producers on five continents have begun feasibility studies, launched pilot demonstrations, or simply gone ahead and re-engineered their ammonia plants to replace fossil fuel inputs with renewable hydrogen.

Article

Israeli Group Develops New Electrolysis Technology

Last month a group of researchers from the Technion Israel Institute of Technology published a paper, “Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting,” in the journal Nature Energy.  The key word in the title is “efficient.”  In a September 15 Technion press release, the researchers state that their technology “facilitates an unprecedented energetic efficiency of 98.7% in the production of hydrogen from water.”  Applied to the appropriate use case, the technology could lead to a major improvement in green ammonia’s ability to compete with brown ammonia and other low-carbon energy carriers.

Article

Ammonia = Hydrogen 2.0 Conference: panel discussion recap

The Ammonia Energy Association Australia’s Ammonia = Hydrogen 2.0 Conference took place on 22-23 August 2019 in Melbourne, Australia. It attracted 115 attendees from industry, government, and research institutions. This is the first of two articles about the event; this article recaps the interactive panel sessions and the second article will highlight selected presentations. The panel discussions were placed at the end of the program so that important themes from the presentations could be highlighted and integrated. These themes included: 1) Building an energy export industry using green ammonia; 2) Green ammonia as a maritime bunker fuel; and 3) Green ammonia as grid scale energy storage – a battery to the nation.

Article

Yara and Nel collaborate to reduce electrolyzer costs; announce green ammonia pilot in Norway by 2022

This week, two Norwegian companies, fertilizer producer Yara and electrolyzer manufacturer Nel, announced an agreement to test Nel's "next generation" alkaline electrolyzer at an ammonia production site. The parties expect to begin operating a 5 MW prototype in 2022, feeding green hydrogen directly into Yara's 500,000 ton per year ammonia plant at Porsgrunn.

Paper

Decarbonized Ammonia for Food and Energy

Yara, the Crop nutrition company for the future, established several new business units to sustainably feed the world and protect the planet. Within the segment New Business – Decarbonize Yara – will focus on the main aspects of green house gas emissions in the value chain. Decarbonized ammonia, through the renewable hydrogen route, has several carbon footprint advantages. Fertilizer production will reduce CO2 emissions, the derived nitrate based fertilizer has a lower carbon footprint at field application than other fertilzers and renewable ammonia can be used as an energy carrier (energy storage and (in-)direct fuel). The presentation will cover a…

Article

Green ammonia is key to “making Yara carbon-neutral by 2050”

Yara International today published a video promoting Green Ammonia, which it states will be key to meeting its new corporate target of "making Yara carbon-neutral by 2050." The timing of this publication is highly appropriate because, also today, we announce the full program for our 16th annual Ammonia Energy Conference, which features a Keynote Speech from Rob Stevens of Yara's Decarbonize division.

Article

AEA Australia conference announced for August 2019: Ammonia = Hydrogen 2.0

ANNOUNCEMENT: The Australian chapter of the Ammonia Energy Association (AEA Australia) has announced details of its inaugural conference, which will take place on August 22 and 23, 2019, and will be held at CSIRO in Clayton, Victoria. Entitled "Ammonia = Hydrogen 2.0," the conference will focus on the role of ammonia within the Australian hydrogen economy, specifically "Building an energy export industry using Green Ammonia." In addition to a full program of talks by invited speakers, networking events will include panel discussions, a poster session, and the conference dinner. Registration for the event is now open, with an early booking discount available until July 5.

Article

NH3 Event in Rotterdam, June 6-7

This year's ammonia conference in Rotterdam, the third annual NH3 Event, begins two weeks from today. Since our guest post in March, announcing the initial roster of conference speakers, the organizers have confirmed new speakers, added more sessions, and announced further details. The NH3 Event is a two-day conference, taking place on June 6 & 7, presenting "state of the art solutions and innovations on the subject of Sustainable Ammonia." Although the conference hall is already close to capacity, a few dozen tickets remain available through the NH3 Event website.

Article

NH3 Event announces big names for third annual Rotterdam conference

After two successful years, the NH3 Event returns on June 6 & 7 in Rotterdam, the Netherlands, for the third edition. Ammonia is still an underestimated route to achieving a sustainable energy economy. At the NH3 Event, members of the energy community, including the public, NGOs, policy-makers, industries, and academics — including well-known experts, developers, and scientists — gather to present the latest research results and commercial achievements, and to discuss new application fields and business prospects for ammonia in energy solutions. And this year with very interesting names!

Article

Ammonia plant revamp to decarbonize: Yara Pilbara

This week, Yara announced major progress toward producing "green ammonia" at its plant in Pilbara, Australia. Its new partner in this project is ENGIE, the global energy and services group, which last year made a major commitment to developing large-scale renewable hydrogen projects. I first reported Yara's plans for a solar ammonia demonstration at its Pilbara plant in September 2017. This week's announcement means that the Pilbara project has moved to the next feasibility phase. However, major elements of the project have already been designed and built: during last year's scheduled turnaround for plant maintenance, the hydrogen piping tie-in was completed - meaning that the Haber-Bosch unit is ready to receive hydrogen directly, as soon as an electrolyzer has been built to supply it with renewable feedstock.

Article

Ammonia plant revamp to decarbonize: Yara Sluiskil

Last year, Yara Sluiskil, in the Netherlands, upgraded its existing ammonia plant by introducing a hydrogen pipeline connection, thereby reducing its reliance on fossil fuels. The pipeline was commissioned in October 2018 and now "ensures the efficient and safe transport of hydrogen," which was previously a waste-product at Dow's nearby ethylene cracker. Already, the project "delivers a CO2 saving of 10,000 tons" and a decrease in energy consumption of "0.15 petajoules (PJ) per year." This is, perhaps, the first ammonia plant decarbonization revamp, and it shows that it is both possible and affordable to reduce emissions from existing ammonia plants today.

Article

New P2A2P Scheme Proposed in Norway

Svalbard, the Norwegian archipelago that sits far above the Arctic Circle, is being considered for the back end of an electricity-to-ammonia-to-electricity (P2A2P) scheme.  As reported in Norway's Teknisk Ukeblad (TU), the state-owned utility Statkraft has surfaced ammonia as one of four possible hydrogen-oriented solutions to meet Svalbard’s energy needs – and then short-listed it for further study.

Article

Great Strides in NH3 Commitment and Progress in Australia

In the last 12 months ... Ammonia Energy has published posts covering pertinent activity in 32 different countries.  In most of them, ammonia’s potential as versatile energy vector has reached the point of avowed interest from relevant institutions.  In a small handful, it has become a part of national policy.  But, as demonstrated in repeated instances throughout the year, nowhere is ammonia energy more robustly embraced than Australia.  The central argument behind this assertion is captured in the phrase, “the complete package,” as in “package of resources, policies, players, partners, and investments.”

Article

Ammonia as a Renewable Fuel for the Maritime Industry

Last week, I wrote about a crucial new report that discusses four fuel technologies: batteries, hydrogen, ammonia, and nuclear. These could reduce the shipping sector's emissions in line with targets set in the IMO's Initial GHG Strategy. The report, Reducing CO2 Emissions to Zero, concludes that "all industry stakeholders ... need to get on with the job of developing zero CO2 fuels." This call to action should be consequential: it comes from the International Chamber of Shipping, an influential industry group that represents "more than 80% of the world merchant fleet." This week, I provide an example of the kind of research required, with an update on a project that aims to demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fueled by its own cargo." Although this project is still in its early days, I want to highlight three aspects that I believe will be crucial to its success. First, the work is being done by a consortium, bringing together many industry stakeholders, each with its own expertise and commercial interests. Second, the scope of research extends beyond conventional engine configurations to include not just new fuels but also new technology combinations; in other words, rather than assess new fuels in old engines, it aims to develop optimized propulsion designs for zero-emission fuels. And, third, its consideration of ammonia as a fuel begins with a comprehensive safety analysis.

Article

Science Publishes Feature Article on Ammonia Energy

On July 13, Science magazine, the flagship publication of the American Association for the Advancement of Science (AAAS), published a 2,800-word “feature article" on ammonia energy. The article, headlined, “Liquid sunshine: Ammonia made from sun, air, and water could turn Australia into a renewable energy superpower,” is uniformly open-minded and upbeat.  Its opening section ends with a quote from Monash University Professor of Physics and Chemistry Doug MacFarlane; “’Liquid ammonia is liquid energy,’ he says. ‘It's the sustainable technology we need.’” MacFarlane helped launch the Australian chapter of the NH3 Fuel Association.

Article

Yara and BASF open their brand-new, world-scale plant, producing low-carbon ammonia

The newest ammonia plant on the planet has opened in Freeport, Texas. A joint venture between Yara and BASF, this world-scale ammonia plant uses no fossil fuel feedstock. Instead, it will produce 750,000 metric tons of ammonia per year using hydrogen and nitrogen delivered directly by pipeline. The plant's hydrogen contract is structured so that the primary supply is byproduct hydrogen, rather than hydrogen produced from fossil fuels, and therefore the Freeport plant can claim that its ammonia has a significantly reduced carbon footprint. This new ammonia plant demonstrates three truths. First, low-carbon merchant ammonia is available for purchase in industrial quantities today: this is not just technically feasible but also economically competitive. Second, carbon intensity is measured in shades of grey, not black and white. Ammonia is not necessarily carbon-free or carbon-full, but it has a carbon intensity that can quantified and, in a carbon-constrained economy, less carbon content equates to higher premium pricing. Third, the ammonia industry must improve its carbon footprinting before it can hope to be rewarded for producing green ammonia.

Article

What drives new investments in low-carbon ammonia production? One million tons per day demand

Last week, the International Maritime Organization (IMO) formally adopted its Initial GHG Strategy. This means that the shipping industry has committed to "reduce the total annual GHG emissions by at least 50% by 2050," and completely "phase them out, as soon as possible in this century." This also means that a global industry is searching for a very large quantity of carbon-free liquid fuel, with a production and distribution infrastructure that can be scaled up within decades. The most viable option is ammonia. How much would be required? Roughly one million tons of ammonia per day.

Article

Yara’s N-Tech Platform: Making Strides with Green Ammonia

Yara International, one of the world’s largest ammonia producers, is making strides in its development of green ammonia as a fertilizer, chemical intermediate, and energy carrier.  The progress is documented in the company’s 2017 annual report, released last week, and in more detail in a presentation delivered in late February at the 2018 Nitrogen + Syngas Conference in Gothenburg, Sweden.

Article

Ammonia Flash Cracking and Energy Development in Southern Africa

New ammonia production capacity is being built in southern Africa. The outputs will support agricultural development in the region – but could also support development of ammonia as a universal energy commodity. A British start-up company is currently at work to develop a beachhead use case for ammonia energy.

Article

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Article

Green ammonia demonstration plant in The Netherlands

Last month, a heavyweight consortium of local and global companies announced plans to collaborate on a project to design, build, operate, and evaluate a demonstration plant to produce "green ammonia" from water, air, and renewable energy in The Netherlands. This is one practical outcome of last year's Power-to-Ammonia study, which examined the economic and technical feasibility of using tidal power off the island of Goeree-Overflakkee in Zuid-Holland to power a 25 MWe electrolyzer unit, and feed renewable hydrogen to a 20,000 ton per year green ammonia plant. This new demonstration plant phase of the project will still be led by the original developer, Dutch mini-ammonia plant developer Proton Ventures. However, its partners in the venture now include Yara and Siemens, as well as speciality fertilizer producer Van Iperen, and local sustainable agricultural producer, the Van Peperstraten Groep.

Article

Yara’s Solar Ammonia Plant is a Key Step toward Global Trade in Renewable Energy

In the last 12 months ... Yara's Australian unit announced plans to build a pilot plant to produce ammonia using solar power. This is a key step in Australia's efforts to develop its economy around clean energy exports, and could lead to a new system of global trade in which renewable ammonia is an energy commodity.

Article

NH3 Fuel Association Announces Charter Sponsors

The NH3 Fuel Association (NH3FA) has released the names of the organization’s charter group of sponsors. The common thread that unites the six companies? A conviction that ammonia energy represents a significant opportunity for their businesses. The sponsors are Yara, Nel Hydrogen, Airgas, Haldor Topsoe, Casale, and Terrestrial Energy.

Article

Yara: solar ammonia pilot plant, for start-up in 2019

Yara, the world's biggest producer of ammonia, has announced that it intends to build a demonstration plant to produce ammonia using solar power, near its existing world-scale plant in the Pilbara, in Western Australia. It expects to complete the feasibility study this year. Next year, in 2018, Yara hopes to finish the engineering design and begin construction so that it can complete the project and begin production of carbon-free ammonia in 2019.

Article

Report from the European Conference: Renewable Ammonia cost-competitive with Natural Gas Ammonia

The viability of producing ammonia using renewable energy was one of the recurring themes of the recent Power to Ammonia conference in Rotterdam. Specifically, what cost reductions or market mechanisms would be necessary so that renewable ammonia - produced using electrolytic hydrogen in a Haber-Bosch plant - would be competitive with normal, "brown" ammonia, made from fossil fuels. A number of major industry participants addressed this theme at the conference, including Yara and OCI Nitrogen, but it was the closing speech, from the International Energy Agency (IEA), that provided the key data to demonstrate that, because costs have already come down so far, renewable ammonia is cost-competitive in certain regions today.

Article

The fertilizer industry is learning to love green ammonia

ANNUAL REVIEW 2019: Green ammonia is no longer a lonely venture for Yara, which used to appear alone among fertilizer producers in its desire to reduce carbon dioxide emissions from ammonia plants. While dozens of green ammonia demonstration projects and prototype technologies have been demonstrated in recent years, this progress was mostly achieved by energy companies and technology start-ups - and Yara. In the last year, however, fertilizer producers on five continents have begun feasibility studies, launched pilot demonstrations, or simply gone ahead and re-engineered their ammonia plants to replace fossil fuel inputs with renewable hydrogen.

Article

Israeli Group Develops New Electrolysis Technology

Last month a group of researchers from the Technion Israel Institute of Technology published a paper, “Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting,” in the journal Nature Energy.  The key word in the title is “efficient.”  In a September 15 Technion press release, the researchers state that their technology “facilitates an unprecedented energetic efficiency of 98.7% in the production of hydrogen from water.”  Applied to the appropriate use case, the technology could lead to a major improvement in green ammonia’s ability to compete with brown ammonia and other low-carbon energy carriers.

Article

Ammonia = Hydrogen 2.0 Conference: panel discussion recap

The Ammonia Energy Association Australia’s Ammonia = Hydrogen 2.0 Conference took place on 22-23 August 2019 in Melbourne, Australia. It attracted 115 attendees from industry, government, and research institutions. This is the first of two articles about the event; this article recaps the interactive panel sessions and the second article will highlight selected presentations. The panel discussions were placed at the end of the program so that important themes from the presentations could be highlighted and integrated. These themes included: 1) Building an energy export industry using green ammonia; 2) Green ammonia as a maritime bunker fuel; and 3) Green ammonia as grid scale energy storage – a battery to the nation.

Article

Yara and Nel collaborate to reduce electrolyzer costs; announce green ammonia pilot in Norway by 2022

This week, two Norwegian companies, fertilizer producer Yara and electrolyzer manufacturer Nel, announced an agreement to test Nel's "next generation" alkaline electrolyzer at an ammonia production site. The parties expect to begin operating a 5 MW prototype in 2022, feeding green hydrogen directly into Yara's 500,000 ton per year ammonia plant at Porsgrunn.

Article

Green ammonia is key to “making Yara carbon-neutral by 2050”

Yara International today published a video promoting Green Ammonia, which it states will be key to meeting its new corporate target of "making Yara carbon-neutral by 2050." The timing of this publication is highly appropriate because, also today, we announce the full program for our 16th annual Ammonia Energy Conference, which features a Keynote Speech from Rob Stevens of Yara's Decarbonize division.

Article

AEA Australia conference announced for August 2019: Ammonia = Hydrogen 2.0

ANNOUNCEMENT: The Australian chapter of the Ammonia Energy Association (AEA Australia) has announced details of its inaugural conference, which will take place on August 22 and 23, 2019, and will be held at CSIRO in Clayton, Victoria. Entitled "Ammonia = Hydrogen 2.0," the conference will focus on the role of ammonia within the Australian hydrogen economy, specifically "Building an energy export industry using Green Ammonia." In addition to a full program of talks by invited speakers, networking events will include panel discussions, a poster session, and the conference dinner. Registration for the event is now open, with an early booking discount available until July 5.

Article

NH3 Event in Rotterdam, June 6-7

This year's ammonia conference in Rotterdam, the third annual NH3 Event, begins two weeks from today. Since our guest post in March, announcing the initial roster of conference speakers, the organizers have confirmed new speakers, added more sessions, and announced further details. The NH3 Event is a two-day conference, taking place on June 6 & 7, presenting "state of the art solutions and innovations on the subject of Sustainable Ammonia." Although the conference hall is already close to capacity, a few dozen tickets remain available through the NH3 Event website.

Article

NH3 Event announces big names for third annual Rotterdam conference

After two successful years, the NH3 Event returns on June 6 & 7 in Rotterdam, the Netherlands, for the third edition. Ammonia is still an underestimated route to achieving a sustainable energy economy. At the NH3 Event, members of the energy community, including the public, NGOs, policy-makers, industries, and academics — including well-known experts, developers, and scientists — gather to present the latest research results and commercial achievements, and to discuss new application fields and business prospects for ammonia in energy solutions. And this year with very interesting names!

Article

Ammonia plant revamp to decarbonize: Yara Pilbara

This week, Yara announced major progress toward producing "green ammonia" at its plant in Pilbara, Australia. Its new partner in this project is ENGIE, the global energy and services group, which last year made a major commitment to developing large-scale renewable hydrogen projects. I first reported Yara's plans for a solar ammonia demonstration at its Pilbara plant in September 2017. This week's announcement means that the Pilbara project has moved to the next feasibility phase. However, major elements of the project have already been designed and built: during last year's scheduled turnaround for plant maintenance, the hydrogen piping tie-in was completed - meaning that the Haber-Bosch unit is ready to receive hydrogen directly, as soon as an electrolyzer has been built to supply it with renewable feedstock.

Article

Ammonia plant revamp to decarbonize: Yara Sluiskil

Last year, Yara Sluiskil, in the Netherlands, upgraded its existing ammonia plant by introducing a hydrogen pipeline connection, thereby reducing its reliance on fossil fuels. The pipeline was commissioned in October 2018 and now "ensures the efficient and safe transport of hydrogen," which was previously a waste-product at Dow's nearby ethylene cracker. Already, the project "delivers a CO2 saving of 10,000 tons" and a decrease in energy consumption of "0.15 petajoules (PJ) per year." This is, perhaps, the first ammonia plant decarbonization revamp, and it shows that it is both possible and affordable to reduce emissions from existing ammonia plants today.

Article

New P2A2P Scheme Proposed in Norway

Svalbard, the Norwegian archipelago that sits far above the Arctic Circle, is being considered for the back end of an electricity-to-ammonia-to-electricity (P2A2P) scheme.  As reported in Norway's Teknisk Ukeblad (TU), the state-owned utility Statkraft has surfaced ammonia as one of four possible hydrogen-oriented solutions to meet Svalbard’s energy needs – and then short-listed it for further study.

Article

Great Strides in NH3 Commitment and Progress in Australia

In the last 12 months ... Ammonia Energy has published posts covering pertinent activity in 32 different countries.  In most of them, ammonia’s potential as versatile energy vector has reached the point of avowed interest from relevant institutions.  In a small handful, it has become a part of national policy.  But, as demonstrated in repeated instances throughout the year, nowhere is ammonia energy more robustly embraced than Australia.  The central argument behind this assertion is captured in the phrase, “the complete package,” as in “package of resources, policies, players, partners, and investments.”

Article

Ammonia as a Renewable Fuel for the Maritime Industry

Last week, I wrote about a crucial new report that discusses four fuel technologies: batteries, hydrogen, ammonia, and nuclear. These could reduce the shipping sector's emissions in line with targets set in the IMO's Initial GHG Strategy. The report, Reducing CO2 Emissions to Zero, concludes that "all industry stakeholders ... need to get on with the job of developing zero CO2 fuels." This call to action should be consequential: it comes from the International Chamber of Shipping, an influential industry group that represents "more than 80% of the world merchant fleet." This week, I provide an example of the kind of research required, with an update on a project that aims to demonstrate "the technical feasibility and cost effectiveness of an ammonia tanker fueled by its own cargo." Although this project is still in its early days, I want to highlight three aspects that I believe will be crucial to its success. First, the work is being done by a consortium, bringing together many industry stakeholders, each with its own expertise and commercial interests. Second, the scope of research extends beyond conventional engine configurations to include not just new fuels but also new technology combinations; in other words, rather than assess new fuels in old engines, it aims to develop optimized propulsion designs for zero-emission fuels. And, third, its consideration of ammonia as a fuel begins with a comprehensive safety analysis.

Article

Science Publishes Feature Article on Ammonia Energy

On July 13, Science magazine, the flagship publication of the American Association for the Advancement of Science (AAAS), published a 2,800-word “feature article" on ammonia energy. The article, headlined, “Liquid sunshine: Ammonia made from sun, air, and water could turn Australia into a renewable energy superpower,” is uniformly open-minded and upbeat.  Its opening section ends with a quote from Monash University Professor of Physics and Chemistry Doug MacFarlane; “’Liquid ammonia is liquid energy,’ he says. ‘It's the sustainable technology we need.’” MacFarlane helped launch the Australian chapter of the NH3 Fuel Association.

Article

Yara and BASF open their brand-new, world-scale plant, producing low-carbon ammonia

The newest ammonia plant on the planet has opened in Freeport, Texas. A joint venture between Yara and BASF, this world-scale ammonia plant uses no fossil fuel feedstock. Instead, it will produce 750,000 metric tons of ammonia per year using hydrogen and nitrogen delivered directly by pipeline. The plant's hydrogen contract is structured so that the primary supply is byproduct hydrogen, rather than hydrogen produced from fossil fuels, and therefore the Freeport plant can claim that its ammonia has a significantly reduced carbon footprint. This new ammonia plant demonstrates three truths. First, low-carbon merchant ammonia is available for purchase in industrial quantities today: this is not just technically feasible but also economically competitive. Second, carbon intensity is measured in shades of grey, not black and white. Ammonia is not necessarily carbon-free or carbon-full, but it has a carbon intensity that can quantified and, in a carbon-constrained economy, less carbon content equates to higher premium pricing. Third, the ammonia industry must improve its carbon footprinting before it can hope to be rewarded for producing green ammonia.

Article

What drives new investments in low-carbon ammonia production? One million tons per day demand

Last week, the International Maritime Organization (IMO) formally adopted its Initial GHG Strategy. This means that the shipping industry has committed to "reduce the total annual GHG emissions by at least 50% by 2050," and completely "phase them out, as soon as possible in this century." This also means that a global industry is searching for a very large quantity of carbon-free liquid fuel, with a production and distribution infrastructure that can be scaled up within decades. The most viable option is ammonia. How much would be required? Roughly one million tons of ammonia per day.

Article

Yara’s N-Tech Platform: Making Strides with Green Ammonia

Yara International, one of the world’s largest ammonia producers, is making strides in its development of green ammonia as a fertilizer, chemical intermediate, and energy carrier.  The progress is documented in the company’s 2017 annual report, released last week, and in more detail in a presentation delivered in late February at the 2018 Nitrogen + Syngas Conference in Gothenburg, Sweden.

Article

Ammonia Flash Cracking and Energy Development in Southern Africa

New ammonia production capacity is being built in southern Africa. The outputs will support agricultural development in the region – but could also support development of ammonia as a universal energy commodity. A British start-up company is currently at work to develop a beachhead use case for ammonia energy.

Article

Full program announced for the 2018 NH3 Event Europe

The second annual European Conference on Sustainable Ammonia Solutions has announced its full program, spread over two days, May 17 and 18, 2018, at Rotterdam Zoo in the Netherlands. The international cadre of speakers, representing a dozen countries from across Europe as well as the US, Canada, Israel, and Japan, will describe global developments in ammonia energy from the perspectives of industry, academia, and government agencies.

Article

Green ammonia demonstration plant in The Netherlands

Last month, a heavyweight consortium of local and global companies announced plans to collaborate on a project to design, build, operate, and evaluate a demonstration plant to produce "green ammonia" from water, air, and renewable energy in The Netherlands. This is one practical outcome of last year's Power-to-Ammonia study, which examined the economic and technical feasibility of using tidal power off the island of Goeree-Overflakkee in Zuid-Holland to power a 25 MWe electrolyzer unit, and feed renewable hydrogen to a 20,000 ton per year green ammonia plant. This new demonstration plant phase of the project will still be led by the original developer, Dutch mini-ammonia plant developer Proton Ventures. However, its partners in the venture now include Yara and Siemens, as well as speciality fertilizer producer Van Iperen, and local sustainable agricultural producer, the Van Peperstraten Groep.

Article

Yara’s Solar Ammonia Plant is a Key Step toward Global Trade in Renewable Energy

In the last 12 months ... Yara's Australian unit announced plans to build a pilot plant to produce ammonia using solar power. This is a key step in Australia's efforts to develop its economy around clean energy exports, and could lead to a new system of global trade in which renewable ammonia is an energy commodity.

Article

NH3 Fuel Association Announces Charter Sponsors

The NH3 Fuel Association (NH3FA) has released the names of the organization’s charter group of sponsors. The common thread that unites the six companies? A conviction that ammonia energy represents a significant opportunity for their businesses. The sponsors are Yara, Nel Hydrogen, Airgas, Haldor Topsoe, Casale, and Terrestrial Energy.

Article

Yara: solar ammonia pilot plant, for start-up in 2019

Yara, the world's biggest producer of ammonia, has announced that it intends to build a demonstration plant to produce ammonia using solar power, near its existing world-scale plant in the Pilbara, in Western Australia. It expects to complete the feasibility study this year. Next year, in 2018, Yara hopes to finish the engineering design and begin construction so that it can complete the project and begin production of carbon-free ammonia in 2019.

Article

Report from the European Conference: Renewable Ammonia cost-competitive with Natural Gas Ammonia

The viability of producing ammonia using renewable energy was one of the recurring themes of the recent Power to Ammonia conference in Rotterdam. Specifically, what cost reductions or market mechanisms would be necessary so that renewable ammonia - produced using electrolytic hydrogen in a Haber-Bosch plant - would be competitive with normal, "brown" ammonia, made from fossil fuels. A number of major industry participants addressed this theme at the conference, including Yara and OCI Nitrogen, but it was the closing speech, from the International Energy Agency (IEA), that provided the key data to demonstrate that, because costs have already come down so far, renewable ammonia is cost-competitive in certain regions today.

Paper

Decarbonized Ammonia for Food and Energy

Yara, the Crop nutrition company for the future, established several new business units to sustainably feed the world and protect the planet. Within the segment New Business – Decarbonize Yara – will focus on the main aspects of green house gas emissions in the value chain. Decarbonized ammonia, through the renewable hydrogen route, has several carbon footprint advantages. Fertilizer production will reduce CO2 emissions, the derived nitrate based fertilizer has a lower carbon footprint at field application than other fertilzers and renewable ammonia can be used as an energy carrier (energy storage and (in-)direct fuel). The presentation will cover a…