Paper

Pure Ammonia Combustion Micro Gas Turbine System

To protect against global warming, a massive influx of renewable energy is expected. Although hydrogen is a renewable media, its storage and transportation in large quantity has some problems. Ammonia fuel, however, is a hydrogen energy carrier and carbon-free fuel, and its storage and transportation technology is already established. In the 1960s, development of ammonia combustion gas turbines was abandoned because combustion efficiency was unacceptably low [1]. Recent demand for hydrogen energy carriers has revived the interest in ammonia as fuel [2, 3]. In 2015, ammonia-combustion gas turbine power generation was reported in Japan using a 50-kW class micro gas…

Paper

Energy Storage through Electrochemical Ammonia Synthesis Using Proton-Conducting Ceramics

In this presentation, we provide an overview of an ambitious project to store renewable energy through electrochemical synthesis of ammonia. The joint project between the Colorado School of Mines (Golden, CO) and FuelCell Energy, Inc. (Danbury, CT) is supported through the U.S. Department of Energy ARPA-E ‘REFUEL’ program. The research and development team seeks to harness the unique properties of proton-conducting ceramics to activate chemical and electrochemical reactions for efficient and cost-effective synthesis of ammonia. The system concept is shown in Figure 1; renewable electricity is used to drive electrolysis of the H2O feedstock to form hydrogen. This electrochemically produced…

Paper

300°C Proton-Exchange Membrane for Low-Pressure Electrolytic Ammonia Synthesis

The two North Dakota universities and Proton OnSite are developing a 300°C-capable polymer–inorganic composite (PIC) proton exchange membrane for low-pressure (15-psi) ammonia synthesis. The PIC membrane comprises an inorganic proton conductor strategically composited within a high-temperature polymer to enable a proton conductivity of 10-2 siemens/centimeter at 300°C. Integrated with appropriate low-cost anode and cathode catalysts in a membrane–electrode assembly, the gas-impermeable PIC membrane is projected to enable ammonia production at a total energy input of about 6400 kilowatt-hours/ton (kWh/ton), versus about 8500 kWh/ton for state-of-the-art Haber Bosch-based ammonia production. The PIC membrane will also have application in high-temperature water electrolysis…

Paper

Material Discovery and Investigation of Novel Y Containing Ru Catalysts for Low Temperature Ammonia Decomposition

Liquid ammonia can be used as an alternative hydrogen carrier and can be decomposed over catalysts to create a high purity hydrogen stream for fuel cell applications. Ammonia decomposition is typically catalyzed using supported ruthenium catalysts. Current ruthenium catalysts are expensive and often require reaction temperatures of 650 °C to attain complete conversion [1]. For the hydrogen produced from ammonia decomposition to be efficiently used in proton exchange membrane fuel cells, operating temperatures need to be considerably lowered and effluent concentrations of ammonia need to be minimized to avoid poisoning of the membrane [2]. Therefore, it is of interest to…

Paper

Optimizing Absorptive Separation for Intensification of Ammonia Production

High pressure requirements of Haber-Bosch process imposes substantial operating (e.g., compression) and capital (compressor cost, advanced costly alloys, thick reactor casing, etc.) expenses in the ammonia production. Cost considerations force ammonia producers to take advantage of the economy of scale to drive down the manufacture cost, while small and energy-efficient processes that can be powered with off-grid renewable energy are required for ammonia-mediated hydrogen economy. Small-scale reaction-absorption process is proposed to be a viable technology to reduce the operating pressure requirements of Haber-Bosch process.1–4 Here, we present an overview of our efforts to further intensify ammonia production via reaction-absorption process.…

Paper

New Technology of the Ammonia Co-Firing with Pulverized Coal to Reduce the NOx Emission

Ammonia is recognized as the new energy carrier and it is expected to be introduced into the society in a short time, since the infrastructures related to the ammonia, such as the mass production, transportation and storage are already introduced to produce the fertilizer for the agriculture. There is one technical issue, to use the ammonia in the direct combustion as the fuel for the electric power generation. It is the increase of the NO concentration in the exhaust gas. Ammonia contains the large amount of the nitrogen, comparing with any other fuels that human being has ever treated. Nitrogen…

Paper

Demonstration and Optimization of Green Ammonia Production Operation Responding to Fluctuating Hydrogen Production from Renewable Energy

Ammonia is a promising hydrogen carrier to transport green hydrogen from overseas to Japan at lower cost and resulting in lower lifecycle CO2 emission. Low carbon ammonia will be produced by fossil fuel reforming with CCS or EOR at the early stage of the introduction of ammonia fuel to the market. Green ammonia production from renewable sources is the ultimate goal, but there are some issues to commercialize. The low capacity factor, which is caused by the fluctuation of solar irradiation or wind speed, is a big issue which leads to ammonia production costs. In this presentation, we would like…

Paper

Solid Oxide Technology for Ammonia Production and Use

The presentation will outline a 4 million € project funded by the Danish Energy Agency. The project is coordinated by Haldor Topsøe A/S and the partners are Vestas Wind Power, Ørsted, Energinet, Equinor, DTU Energy Conversion, and Aarhus University. The purpose of the project is to demonstrate a novel process for generation of ammonia synthesis gas without an air separation unit by means of Solid Oxide Electrolyzer Cells as well as using ammonia as a fuel for Solid Oxide Fuel Cells. The synthesis gas generation plant will be a 50 kW unit. The SOFC unit test will be carried out…

Paper

Activation By High Temperature Reduction of Ru Catalyst Supported on Rare Earth Oxide for Ammonia Synthesis

Ammonia is an important chemical feedstock, and more than 80% of the synthesized ammonia is used to produce fertilizer. Ammonia is also being considered as an energy carrier and hydrogen source (1) because it has a high energy density (12.8 GJ m-3) and a high hydrogen content (17.6 wt%), (2) because infrastructure for ammonia storage and transportation is already established, and (3) because carbon dioxide is not emitted when ammonia is decomposed to produce hydrogen. If ammonia could be efficiently produced from a renewable energy source, such as solar or wind energy, problems related to the global energy crisis could…