Paper

Ammonia as an Energy Carrier for Renewable Energy

At present, ammonia is mostly formed through reforming of natural gas (CH4). A 1,000 ton per day plant is said to consume about 35 GJ of natural gas to produce 1 ton of ammonia (22.5 GJ of enthalpy). About 50% of extra energy is wasted. If 1 ton ammonia is produced through water electrolysis, 22.5 GJ of electricity is necessary theoretically. Here again, extra electric energy must be wasted. The author discusses roughly how the efficiency depends upon the process size and the renewable energy cost.

Paper

A Hybrid Vehicle Powered by Hydrogen and Ammonia

A partnership of Research and Industry entities has developed a fully working hybrid electric vehicle equipped with a 15 kW IC engine fuelled with liquid ammonia as a range extender of the lithium batteries pack on board. The entire vehicle powertrain (ie, the IC engine, the electric generator coupled with the engine, the electric motor, the electronics etc.) has been studied and designed. Regarding the IC engine, as is known, ammonia combustion is characterized by a high activation energy and a low flame velocity, therefore a small amount of hydrogen is requested as igniter and combustion promoter. The necessary amount…

Paper

Production of Ammonia and Nitrogen Fertilizers based on Biomass

The Swedish University of Agricultural Sciences have been conducting research on production of ammonia and nitrogen fertilizers based on bioenergy since 2006, in the last years in co-operation with Lund University and University of Minnesota. The research has so far been theoretical — studying the techno-economics and the potential environmental impacts. Several possible pathways for ammonia and ammonium nitrate fertilizer production have been explored, e.g. gasification of woody biomass, reforming of biogas from anaerobic digestion, integration in biomass CHP plants. A selection of results from the past years research can be presented: Techno-Economic Assessment of Non-Fossil Ammonia Production P. Tunå,…

Paper

Electrochemical Ammonia Synthesis from Water and Nitrogen using Solid State Ion Conductors

Besides its current applications, ammonia (i.e. carbon-free fuel) could play important roles in preparing for oil depletion and coping with climate change since it releases only nitrogen and water when burned. Ammonia contains 17.6wt% of hydrogen and has significant advantages over hydrogen in storing and transporting energy. The current industrial ammonia production is based on the Haber-Bosch process, which has the drawbacks of high greenhouse gas emission, reaching up to 2.16 kg CO2/kg NH3 and large energy consumption over 30 GJ/ton NH3 resulting from the production of the reactants and the high pressure-high temperature synthesis of ammonia. In order to…

Paper

Ammonia Production Using Wind Energy

Industry professionals and others have begun to consider the use of ammonia as a substitute for fossil energy in the fuel, fertilizer, and chemical sectors. Several factors are driving this concept; including, energy security concerns, the potential for economic development, and reducing the environmental consequences of fossil energy use. In terms of environmental concerns, it is important to determine the potential impacts of producing ammonia before a major switch to ammonia can be considered. This study examined fossil energy use and carbon emissions in the production of ammonia, using life cycle assessment (LCA) methods to analyze production at a novel…