Paper

Ammonia logistics

This presentation will cover logistics in general for ammonia in the USA. In particular, what are the challenges of rail pressures on ammonia transport? What, if any, policy goal does TFI pursue to address challenges with the rail industry?

Paper

Geologic storage for Ammonia

The presentation will include an overview of hard rock storage caverns, their history and design parameters including acceptable host geology. It will detail how ammonia caverns have been used in industrial facilities for over 50 years and how caverns can play an important role in the growth of Ammonia usage globally.

Paper

The Bridge to 100% Nuclear Hydrogen, Enabling Pure Ammonia

My talk will explain what the bridge to 100% nuclear hydrogen is, and how our LWR fleet can be saved by storage and industrial applications like producing Hydrogen at Scale for Ammonia production; and I will walk the audience through the processes and systems available to us, right now, today, to give new life to merchant nuclear and make the way for advanced nuclear. Our storage systems allow for grid balancing and capacity stabilization using excess Merchant LWR nuclear capacity coupled to thermal and pumped storage, and the system would accept otherwise curtailed renewable inputs. With the storage capacity of…

Paper

Renewable ammonia for grid-scale sustainable energy: Sector coupling for economic competitiveness

Ammonia produced from renewably sourced electrolytic hydrogen has considerable promise as a seasonal energy storage medium to enable high renewable penetration in the electrical power generation mix. Long duration energy storage via ammonia is significantly less expensive than using hydrogen or batteries [1,2]. Renewable ammonia can also be used as in its traditional application as a fertilizer to reduce agricultural carbon intensity. These multiple renewable ammonia use cases give rise to opportunities for sector coupling [3]. For example, an electric utility could deploy ammonia for energy storage while also pursuing additional ammonia production for sale in local agriculture markets. This…

Paper

Starfire Energy’s Rapid Ramp modular ammonia plant development status and trajectory

Starfire Energy has transformed from a grant-funded company to an investment-funded company. We are scaling up our Rapid Ramp ammonia production technology to provide renewable, flexible, modular ammonia fuel plants specifically designed to seamlessly integrate with naturally varying renewable power. We will provide an update on the status of our prototype modular Rapid Ramp pilot plant. We will also discuss the development path for mass produced modular plants and illustrate how they will provide the means to make affordable carbon-free NH3 fuel at a broad range of plant sizes and help drive ammonia fuel use to “fuel relevance” and onward…

Paper

Stami Green Ammonia to play a key role in decarbonizing the fertilizer industry

Stamicarbon green ammonia technology is based on the proven Haber-Bosh process and a perfect match for Power to X small and medium size project. It unique operational conditions and lean process design lead to a compact plant configuration with a minimum foot print requirement and thus a very competitive Capex when compared to other technologies. Moreover, the relatively high operating pressure makes it possible to obtain a high conversion per path using a minimum volume of catalyst. Maire Tecnimont group is applying Stami Green Ammonia technology in two green feasibility study projects, Greenfield Nitrogen located in the heart of the…

Paper

Ammonia-based Clean Energy System with Ultra-High Energy Density

Amogy builds a novel carbon-free high energy density system using ammonia (NH3) as a fuel, with the targeted system-level energy densities of >1,000 Wh/kg (gravimetric) and >750 Wh/L (volumetric), respectively.  The solution consists of ammonia storage, a miniaturized fuel processor (or called reformer/reactor) and a fuel cell. With highly efficient catalysts operating at significantly low temperature and heat-integrated hybrid reactor, the innovative energy system is optimized for the mobility applications requiring sustainable and dynamic operations. This new energy system could enable the electrification of heavy ground/sea/air transportations, where current existing and emerging technologies, e.g., Li-ion battery or gaseous hydrogen (H2),…

Paper

Electrolyser integration into a large green ammonia facility: potential hazards and mitigation strategies

Making green ammonia introduces a number of new challenges and Process Safety considerations relative to conventional ammonia production. The hydrogen is made by electrolysis powered by renewable energy. This presentation provides a brief overview of these challenges that cover scale, green power variability and hazards that are new to ammonia production.

Paper

Ammonia: A New Business for Nuclear Energy

Nuclear Energy can be used to support and help decarbonize traditional steam methane reforming and electrolysis to produce hydrogen. Options for integrating nuclear with ammonia, and ammonia derivatives include providing power to an air separation unit to produce nitrogen, and hydrogen combustion to deplete oxygen while providing heat for high temperature steam electrolysis. A comparison of CO2 emissions reduction and costs of urea synthesis indicate there is a strong business case for using nuclear reactors at large and small-distributed ammonia plants. A case for producing 3 tons of ammonia from a 1-MWe power supply will be given.