Article

TU Delft’s Battery-Electrolyzer Technology

On December 14, the journal Energy & Environmental Science published an article on a new technology, “Efficient electricity storage with a battolyser, an integrated Ni–Fe battery and electrolyser.” The lead author is Fokko Mulder, Professor of Materials for Energy Conversion & Storage at the Delft University of Technology (TU Delft) in the Netherlands. The system developed by Mulder and his collaborators accepts electricity from an external source and stores it in the conventional manner of all batteries. The twist is that when the battery is fully charged, any additional incoming electricity is used to generate hydrogen and oxygen via electrolysis. The technology may prove to be a valuable element in a grid-scale ammonia-based energy system.

Article

Australian solar-ammonia exports to Germany

I recently wrote about a vast future market for merchant ammonia: transporting carbon-free energy from Australia's deserts to Japan's electricity grid. Now, however, it is clear that Japan could face international competition for Australia's solar-ammonia resources. Jeff Connolly, CEO of Siemens Pacific, wrote last month about his ambitions for ammonia as an energy export commodity.

Article

Nuon’s Power-to-Ammonia update, and the first European ammonia fuel conference in 2017

An article in the latest issue of Dutch-language magazine NPT Proces Technologie provides a detailed update on the Nuon project, about which we wrote a few months ago. Nuon's Power-to-Ammonia project looks at grid-scale storage of "seasonal surplus" electricity from wind and solar in the form of ammonia. Proton Ventures, the originators of the Power-to-Ammonia concept in The Netherlands, have also been sharing details of the project in recent conference presentations - and announced that they will be hosting the first European ammonia fuel conference, in Rotterdam, in May 2017.

Article

Ammonia Fuel Cells: SOFC stack test and system analysis

New research, recently published in the International Journal of Hydrogen Energy, demonstrates that solid oxide fuel cell (SOFC) systems fueled with ammonia could be "more efficient than equivalent hydrogen-based" systems. This new paper comes out of the Fuel Cell Lab at the University of Perugia, in Italy, and builds upon years of research coming out of that laboratory on the use of ammonia and urea in fuel cells.

Article

Siemens – Green Ammonia

In April 2016, Siemens AG announced that it will construct a plant at the Rutherford Appleton Laboratory in Oxford to demonstrate the production of ammonia in an electrochemical reactor. The technology is seen as a facilitator of the use of ammonia synthesis as a method for storing renewably generated electricity. It involves lower pressures and temperatures than conventional synthesis with the Haber Bosch process. The project will test two different electrolyte chemistries using its 30 kilowatt electrochemical reactor.

Article

Nuon – Power to Ammonia

In March 2016 the Dutch utility Nuon announced that it will study the possibility of storing "seasonal surplus" electricity from wind and solar in the form of ammonia. The study by Nuon and Delft University of Technology (TU Delft) is part of the project "Power to Ammonia." The study will be conducted at Nuon's Magnum power station.

Article

Study on Reduced Chemical Mechanisms of Ammonia / Methane Combustion under Gas Turbine Conditions

On September 1st, academic journal Energy & Fuels published a new paper that features research coming out of the UK's Cardiff University and Ireland's University of Limerick. This study demonstrates a "reduced mechanism" for simulating the "robust numerical analyses with detailed chemistry" necessary for the "industrial implementation" of ammonia in gas turbine combustion for "future power generation." Here's the abstract: