Article

Power to Ammonia: alternative synthesis technologies

The Institute for Sustainable Process Technology (ISPT) recently published a detailed analysis of three business cases for producing renewable ammonia from electricity: Power to Ammonia. The feasibility study concludes that, in the near term, ammonia production using clean electricity will likely rely on a combination of two old-established, proven technologies: electrolysis and Haber-Bosch (E-HB). To reach this conclusion, however, the study also assessed a range of alternative technologies, which I summarize in this article.

Article

Power to Ammonia: The OCI Nitrogen – Geleen case

The Power-to-Ammonia feasibility study includes an assessment of the costs and benefits of producing ammonia from renewable energy at OCI Nitrogen's existing production site in Geleen. Of all the companies who joined forces in the Power-to-Ammonia project, OCI is the only ammonia producer. Its business case for making carbon-free ammonia is especially interesting therefore: not just because of the company's deep understanding of the ammonia market and available technologies, but also because it faces corporate exposure to the financial, operational, and social risks of relying upon a fossil-fueled technology in a carbon constrained future.

Article

Power to Ammonia: The Stedin – Goeree-Overflakkee case

Goeree-Overflakkee, in the southwest corner of The Netherlands, already produces more renewable power than it can consume. But, by 2020, this small island will generate a full 300 MWe of solar and wind, which far "exceeds the electricity demand on the island, rated at maximum 30 MWe peak." Stedin, the local grid operator, has the expensive task of integrating these and future renewable resources into its electricity distribution system. The recent Power-to-Ammonia study included a detailed analysis of Stedin's business case for producing renewable ammonia as a way to store and transport this electricity - enabling the island to become a net exporter of clean energy.

Article

Power to Ammonia: the Eemshaven case

The Institute for Sustainable Process Technology recently published a feasibility study, Power to Ammonia, looking at the possibility of producing and using ammonia in the renewable power sector. This project is based in The Netherlands and is led by a powerful industrial consortium. I wrote about the feasibility study last month, but it deserves closer attention because it examines three entirely separate business cases for integrating ammonia into a renewable energy economy, centered on three site-specific participants in the study: Nuon at Eemshaven, Stedin at Goeree-Overflakkee, and OCI Nitrogen at Geleen. Over the next few years, the group intends to build pilot projects to develop and demonstrate the necessary technologies. Next month, however, these projects will be an important part of the Power-to-Ammonia Conference, in Rotterdam on May 18-19. This article is the first in a series of three that aims to introduce each business case.

Article

Power to Ammonia feasibility study

The Institute for Sustainable Process Technology has just published a feasibility study that represents a major step toward commercializing renewable ammonia. It examines the "value chains and business cases to produce CO2-free ammonia," analysing the potential for commercial deployment at three companies with existing sites in The Netherlands: Nuon at Eemshaven, Stedin at Goeree-Overflakkee, and OCI Nitrogen at Geleen. The project is called Power to Ammonia.

Article

Bunker Ammonia: carbon-free liquid fuel for ships

The shipping industry is beginning to evaluate ammonia as a potential "bunker fuel," a carbon-free alternative to the heavy fuel oil (HFO) used in maritime transport. International trade associations are leading the effort to decarbonize the sector, in alignment with targets set by the Paris Climate Agreement. Their immediate challenge is simple to state but hard to solve: "ambitious CO2 reduction objectives will only be achievable with alternative marine fuels which do not yet exist." In the long-term, however researchers recognize that "fuel cell-powered ships are likely to dominate, drawing their energy from fuels such as hydrogen and ammonia."

Article

Ammonia for energy storage: economic and technical analysis

Developers around the world are looking at using ammonia as a form of energy storage, essentially turning an ammonia storage tank into a very large chemical battery. In the UK, Siemens is building an "all electric ammonia synthesis and energy storage system." In the Netherlands, Nuon is studying the feasibility of using Power-to-Ammonia "to convert high amounts of excess renewable power into ammonia, store it and burn it when renewable power supply is insufficient." While results from Siemens could be available in 2018, it might be 2021 before we see results from Nuon, whose "demonstration facility is planned to be completed in five years." But, while we wait for these real-world industrial data, the academic literature has just been updated with a significant new study on the design and performance of a grid-scale ammonia energy storage system.