Technology status: ammonia production from electrolysis-based hydrogen

Electrolysis-based ammonia production peaked worldwide around 1970, before the economies of scale and cheap gas feedstock led to its decline. With decarbonization and climate-neutral industrial processes now a critical priority, electrolysis-based ammonia production has re-emerged as a long-term solution. From a base of 10,000 tonnes per year worldwide production in 2020, as much as 100 million tonnes per year of electrolysis-based ammonia could be produced by the end of this decade, driven by a dramatic roll-out of renewable energy generation and installed electrolyzer capacity.


Quantifying the emissions footprint of the nitrogen industry

Understanding and quantifying the emissions footprint of an industry is critical to decarbonisation efforts. Without high quality and standardised data, an industry will continually stall on lowering emissions. But this is quickly changing. Companies are seeking to understand their emissions landscape and benchmark themselves accurately. Many leading companies are setting ambitious emissions reduction targets. But its not just the first movers from whom this data matters. Policy is changing as with emissions trading schemes are rolled out across the world. This will force the laggards into action. CRU has developed readily available standardised data and methodologies to capture emissions across…


How green are green and blue hydrogen?

In August, Robert Howarth and Mark Jacobson, respectively from Cornell and Stanford Universities, published “How green is blue hydrogen”, an examination of the lifecycle greenhouse gas emissions (GHG) of blue hydrogen, i.e., hydrogen from steam methane reforming with carbon dioxide capture and storage (CCS). How valid were the assumptions behind the study, were the calculations correct and can a realistic case be argued for blue hydrogen going forward?


Certification of low-carbon ammonia: panel wrap-up from the 2020 Ammonia Energy Conference

What are the key considerations that need to be worked through so we can design and implement a certification scheme for low-carbon ammonia that works for a diverse range of stakeholders? On November 17, 2020, the Ammonia Energy Association (AEA) hosted a panel discussion on the topic as part of the recent Ammonia Energy Conference. Not only was it valuable to find out what important players in the ammonia industry want to see in any future certification scheme, but the panel also kicked off a consultation process among AEA members. An audience of around one hundred and fifty producers, end users and researchers all gave their thoughts on what they would like to see in a future scheme, providing a terrific launching point for the AEA Certification Committee to draft, develop and debut a low-carbon ammonia certification scheme.


Mission Possible: decarbonizing ammonia

Mission Possible, a major report published at the end of 2018, concludes that decarbonizing ammonia production by 2050 is both technically and economically feasible. Among its 172 pages of assumptions, analysis, and explanation, Mission Possible examines production pathways and markets for green ammonia and its derivative green nitrogen fertilizers. It addresses the relatively straightforward issue of how to replace fossil feedstocks with renewable hydrogen for ammonia synthesis, as well as the more complex question of how to source or supplant the carbon dioxide molecules contained in urea, the most common nitrogen fertilizer. The report's economic conclusions will not surprise anyone involved in ammonia production or politics. Yes, green ammonia is currently more expensive than fossil ammonia, although it won't be for long. And no, "none of the increases in end-consumer prices are sufficiently large to be an argument against forceful policies to drive decarbonization."


Yara and BASF open their brand-new, world-scale plant, producing low-carbon ammonia

The newest ammonia plant on the planet has opened in Freeport, Texas. A joint venture between Yara and BASF, this world-scale ammonia plant uses no fossil fuel feedstock. Instead, it will produce 750,000 metric tons of ammonia per year using hydrogen and nitrogen delivered directly by pipeline. The plant's hydrogen contract is structured so that the primary supply is byproduct hydrogen, rather than hydrogen produced from fossil fuels, and therefore the Freeport plant can claim that its ammonia has a significantly reduced carbon footprint. This new ammonia plant demonstrates three truths. First, low-carbon merchant ammonia is available for purchase in industrial quantities today: this is not just technically feasible but also economically competitive. Second, carbon intensity is measured in shades of grey, not black and white. Ammonia is not necessarily carbon-free or carbon-full, but it has a carbon intensity that can quantified and, in a carbon-constrained economy, less carbon content equates to higher premium pricing. Third, the ammonia industry must improve its carbon footprinting before it can hope to be rewarded for producing green ammonia.