Paper

Cracking ammonia

In this talk, I will discuss our latest research in developing novel ammonia cracking catalysts. While ammonia can be used directly as a fuel in high temperature fuel cells, internal combustion engines and gas turbine, the ability to crack ammonia affordably and effectively increases the range of possibilities for utilising ammonia as an energy vector. For example, the production of an ammonia-free hydrogen/nitrogen gas mixture permits the consideration of ammonia as an on-board hydrogen storage option for transportation. Furthermore, the ability to partly crack ammonia provides an increased flexibility for internal combustion engines. I will outline developments in our search…

Paper

Applications of hydrogen permeable membranes in ammonia synthesis and decomposition

It is well known that ammonia is being considered as a method of storing hydrogen. Although some fuel cells are being developed that can use ammonia directly as a fuel source, many fuel cell technologies still require an outside cracker to revert ammonia back into hydrogen for efficient use. In this regard, hydrogen permeable membranes, such as Pd and its alloys, have been targeted as potential membrane reactors in which the ammonia is cracked while the hydrogen is simultaneously separated. Pd and its alloys are expensive, but offer potentially perfect hydrogen purity that is highly preferable for certain fuel cells…

Paper

A novel approach to ammonia decomposition

This talk discusses a new type of process for the cracking of ammonia (NH3) that is an alternative to the use of rare or transition metal catalysts. Effecting the decomposition of NH3 using the concurrent stoichiometric decomposition and regeneration of sodium amide (NaNH2) via sodium metal (Na), this represents a significant departure in reaction mechanism compared with traditional surface catalysts. In variable-temperature NH3 decomposition experiments, using a simple flow reactor, the Na/NaNH2 system shows superior performance to supported nickel and ruthenium catalysts, reaching 99.2% decomposition efficiency with 0.5 g of NaNH2 in a 60 sccm NH3 flow at 530 °C.…

Paper

Student Laboratory Module: Kinetics of Ammonia Cracking

The Chemical and Biological Engineering (CBE) Department at the Colorado School of Mines is dedicated to the continual improvement of the laboratory resources made available to those undergraduates enrolled in courses which have major or minor laboratory components. One such course is Kinetics and Reaction Engineering (CBEN 418), offered to undergraduate seniors in the CBE department. Historically, this course has been delivered primarily as a series of traditional classroom lectures with an experimental module (usually one week at the end of the semester) with about 2 hours of participation time per student outside of normal class hours. Previous experimental designs…

Paper

Using Local Green Energy and Ammonia to Power Gas Turbine Generators

Beginning in the 1950s, a fundamental shift in the way information was electronically expressed and manipulated led to the “digital revolution” that has transformed — is still transforming — information systems and many major industries and that has given rise to the internet, social media, and instant very-low-cost communication (like this website). A good case can be made that a similar “revolution” is beginning — has already begun — to transform the energy systems upon which we all depend. This presentation will address the use of anhydrous (water-free) ammonia, NH3, as a realistic option for making a fundamental shift in…

Paper

A Hybrid Vehicle Powered by Hydrogen and Ammonia

A partnership of Research and Industry entities has developed a fully working hybrid electric vehicle equipped with a 15 kW IC engine fuelled with liquid ammonia as a range extender of the lithium batteries pack on board. The entire vehicle powertrain (ie, the IC engine, the electric generator coupled with the engine, the electric motor, the electronics etc.) has been studied and designed. Regarding the IC engine, as is known, ammonia combustion is characterized by a high activation energy and a low flame velocity, therefore a small amount of hydrogen is requested as igniter and combustion promoter. The necessary amount…