Article

Small-Scale Ammonia Synthesis Technology on Track for 2021

On October 6, 2019, the Nihon Keizai Shimbun published an article that confirmed a goal set at the 2017 launch of Japanese chemical technology developer Tsubame BHB. The goal is to have Tsubame’s ammonia synthesis technology ready for licensing in 2021. According to Tsubame’s English-language Web site, its technology “makes it possible to produce ammonia even at small-scale plants” – good news for ammonia energy project developers interested in distributed production concepts.

Paper

Ammonia Absorbents with High Stability and High Capacity for Fast Cycling

Ammonia absorption is an alternative separation to condensation in ammonia production. Metal chloride salts selectively incorporate ammonia into their crystal lattices with remarkably high capacity. Regeneration and stability of these salts are further improved by dispersing them onto a porous silica support. Here, we discuss the optimal preparation methods of supported metal halides, as well as optimal conditions for uptake and release of ammonia. The metal halide salt particle size, support particle size, support composition and preparation methods are optimized for material stability, speed of uptake and release, and maximum ammonia capacity. An automated system was used to rapidly screen…

Paper

Comparative Technoeconomic Analysis of Conventional and Absorbent-Enhanced Ammonia Synthesis

Ammonia is the second-most produced synthetic chemical and the main precursor for nitrogen-based fertilizer. In 2015, 160 million tons were produced globally, and global demand is expected to grow 1.5% annually until 2050 [1]. However, traditional ammonia production uses natural gas or coal as its hydrogen source, and as a result, is also responsible for more than 1% of global GHG emissions and 5% of global natural gas consumption [2]. Clearly, a more sustainable ammonia production scheme is needed. One such alternative is obtain hydrogen from electrolysis powered by wind- or solar-derived electricity. It has been proposed to perform this…

Paper

Arpa-E Refuel Program: Distributed Production of Ammonia and Its Conversion to Energy

Ammonia, which has high energy density in easily produced liquid form and can be converted to electric or motive power, is considered to be an almost ideal non-carbon energy vector in addition to its common use as a fertilizer. It can be manufactured anywhere using the Haber-Bosch process, effectively stored, transported and used in combustion engines and fuel cells as well as a hydrogen carrier. Transition from fossil fuels as the energy source and feedstock to intermittent renewable energy sources will require a shift from large scale Haber-Bosch plants (1,000 – 1,500 t/day) to distributed ammonia production matching electrical power…

Paper

Optimizing Absorptive Separation for Intensification of Ammonia Production

High pressure requirements of Haber-Bosch process imposes substantial operating (e.g., compression) and capital (compressor cost, advanced costly alloys, thick reactor casing, etc.) expenses in the ammonia production. Cost considerations force ammonia producers to take advantage of the economy of scale to drive down the manufacture cost, while small and energy-efficient processes that can be powered with off-grid renewable energy are required for ammonia-mediated hydrogen economy. Small-scale reaction-absorption process is proposed to be a viable technology to reduce the operating pressure requirements of Haber-Bosch process.1–4 Here, we present an overview of our efforts to further intensify ammonia production via reaction-absorption process.…

Paper

Technoeconomic Requirements for Sustainable Ammonia Production

Ammonia, the feedstock for all nitrogen fertilizers, is produced via the Haber-Bosch process, which is responsible for 1-2% of global carbon dioxide emissions each year. An attractive solution to this problem is to create an electrochemical ammonia synthesis process that can produce ammonia using only air, water, and renewable electricity. Researchers across the world have been working toward such a solution for the last several decades, but so far, no economically viable alternative has been created. The Haber-Bosch process is one of the largest-scale, most highly optimized chemical processes in the world; it is very difficult to find a cheaper…

Paper

Design Optimization of an Ammonia-Based Distributed Sustainable Agricultural Energy System

Small-scale, distributed production of ammonia better enables the use of renewable energy for its synthesis than the current paradigm of large-scale, centralized production. Pursuant to this idea, a small-scale Haber-Bosch process has been installed at the West Central Research and Outreach Center (WCROC) in Morris, MN [1] and there is ongoing work on an absorbent-enhanced process at the University of Minnesota [2], [3]. Using renewables to make ammonia would greatly improve the sustainability of fertilizer production, which currently accounts for 1% of total global energy consumption [4]. The promise of renewable-powered, distributed ammonia production for sustainability is in fact not…

Article

Renewable ammonia energy, harvesting large-scale wind

A chemicals technology firm in Belgium recently launched its vision for using green ammonia for "energy harvesting." The Dualtower is a new kind of wind turbine, under development by Arranged BVBA, that will use wind power to produce and also store hydrogen and nitrogen. These gases are "harvested" as ammonia, which becomes the energy carrier that allows large-scale renewable energy to be transported economically from remote locations with excellent renewable resources to centers of power consumption. Arranged's Dualtower is ambitious and, perhaps, futuristic but it illustrates three powerful concepts. First, the vast untapped scalability of renewable power. Second, the benefits of using ammonia as an energy carrier, to improve the economics of large-scale, long-distance energy transportation relative to every other low-carbon technology. The third concept is simply that every idea has its time, and now may be the time for ammonia energy. What was once futuristic, now just makes sense.

Article

Future Ammonia Technologies: Electrochemical (part 1)

Last month's NH3 Energy+ conference featured presentations on a great range of novel ammonia synthesis technologies, including improvements to Haber-Bosch, and plasmas, membranes, and redox cycles. But, in a mark of a conference approaching maturity, members of the audience had at least as much to contribute as the presenters. This was the case for electrochemical synthesis technologies: while the presentations included updates from an influential industry-academia-government collaboration, led by Nel Hydrogen's US subsidiary, the audience members represented, among others, the new electrochemical ammonia synthesis research lab at Massachusetts Institute of Technology (MIT), and a team from Monash University in Australia. The very next week, Monash published its latest results, reporting an electrochemical process that synthesized ammonia with 60% faradaic efficiency, an unprecedented rate of current conversion at ambient pressure and temperature.

Article

Improvement of Haber-Bosch: Adsorption vs. Absorption

At the recent NH3 Energy+ Topical Conference, Grigorii Soloveichik described the future of ammonia synthesis technologies as a two-way choice: Improvement of Haber-Bosch or Electrochemical Synthesis. Two such Haber-Bosch improvement projects, which received ARPA-E-funding under Soloveichik's program direction, also presented papers at the conference. They each take different approaches to the same problem: how to adapt the high-pressure, high-temperature, constant-state Haber-Bosch process to small-scale, intermittent renewable power inputs. One uses adsorption, the other uses absorption, but both remove ammonia from the synthesis loop, avoiding one of Haber-Bosch's major limiting factors: separation of the product ammonia.