Paper

Design Optimization of an Ammonia-Based Distributed Sustainable Agricultural Energy System

Small-scale, distributed production of ammonia better enables the use of renewable energy for its synthesis than the current paradigm of large-scale, centralized production. Pursuant to this idea, a small-scale Haber-Bosch process has been installed at the West Central Research and Outreach Center (WCROC) in Morris, MN [1] and there is ongoing work on an absorbent-enhanced process at the University of Minnesota [2], [3]. Using renewables to make ammonia would greatly improve the sustainability of fertilizer production, which currently accounts for 1% of total global energy consumption [4]. The promise of renewable-powered, distributed ammonia production for sustainability is in fact not…

Paper

Ship Operation Using LPG and Ammonia As Fuel on MAN B&W Dual Fuel ME-LGIP Engines

LPG has been used as fuel in the car industry for many years and now, with Exmar and Statoil’s orders for ocean-going ships fitted with the dual fuel ME-LGIP engine, LPG will be used on marine engines as well. The new engine series is currently being developed to match all types of bigger merchant ships. This order was made in consequence of the new 2020 0.5% sulphur fuel cap, but this step forward has not stopped the discussion and interest in lowering CO2, NOx, SOx and particulate emissions even further. On the contrary, it has actually been further fuelled by…

Paper

Cost Evaluation Study on CO2-Free Ammonia and Coal Co-Fired Power Generation Integrated with Cost of CCS

This study presents a cost estimation for electricity generated by CO2-free ammonia and coal co-firing. Regulation of CO2 emissions seems to be gaining pace due to the global warming issue so the introduction of CO2-free energy in power generation has become desirable. Ammonia is one of the potential energy carriers for power generation and development of ammonia combustion technology with low NOx emissions has been conducted in Japan. In order to investigate the feasibility of the introduction of CO2-free ammonia in Japan from both the technical and economic viewpoints, we estimated the ammonia supply chain cost from ammonia production integrated…

Paper

NH3: The Optimal Alternative Fuel

Unlike some technology areas where “all of the above” has significant advantages, there are tremendous advantages associated with choosing a single, optimized, liquid transportation fuel. The cost, efficiency and environmental benefits associated with choosing an optimized liquid transportation fuel are enormous and merit serious consideration. NH3 most closely meets the criteria for an ideal liquid transportation fuel. It is the most efficient and cost-effective means of delivering hydrogen and has an extensive world-wide delivery system already in place. Using currently available catalytic controls, NH3 emissions can be even cleaner than hydrogen engine emissions. While NH3 can effectively be produced using…

Paper

The Role of “Green” Ammonia in Decarbonising Energy Systems: Practical Demonstration and Economic Considerations

Ammonia has the potential to contribute significantly to the decarbonisation of energy systems, by offering a practical, carbon-free hydrogen storage and transportation vector as well as a green fuel in its own right. To better understand the prospects and challenges surrounding the use of ammonia in energy systems, Siemens is leading a collaborative project to build and test an ammonia-based energy storage system at the Rutherford Appleton Laboratory in the UK. Together with its project partners (the UK Science and Technology Facilities Council, the University of Oxford and the University of Cardiff), and supported by Innovate UK, Siemens will demonstrate…

Paper

Ammonia Fuel Safety

This paper introduces the existing literature on the safety of using ammonia as a fuel, which provides comparative data for a range of traditional and alternative fuels and energy carriers. The studies reviewed conclude that risk levels associated with using ammonia as a fuel are “similar to those of gasoline,” or “similar, if not lower than for the other fuels,” also including hydrogen, methanol, LPG, and CNG. Ammonia as a fuel can meet all “acceptable” risk levels in even the most stringent regulatory jurisdictions. Addressing popular misconceptions and fears by providing robust sources for quantitative data on the dangers of…

Paper

Ammonia Renewable Energy Fuel Systems at Continental Scale

We must soon “run the world on renewables” but cannot, and should not try to, accomplish this entirely with electricity transmission. New, abundant, low-cost, unconventional natural gas supplies are finite; burning adds CO2 to Earth’s atmosphere. Humanity’s goal must be nothing less than: Transforming the world’s largest industry from ~80% fossil to ~100% renewable, CO2-emission-free energy sources as quickly as we prudently and profitably can. We should now carefully consider using pipeline networks, rather than the electricity grid, for solving the three salient technical problems of renewable energy (RE) at lower cost: Transmission: from diverse, stranded, remote, rich RE resources…

Paper

Japan – a future market for Australian solar ammonia

Japan and Australia are intimately linked in energy trade. Australia counts energy exports as a major source of foreign exchange income and Japan, which uses nearly 4 times the primary energy as Australia, imports nearly all of it. Approximately 40% of Australia’s coal exports are bought by Japan and were worth $AUD15.4 billion in 2012-13. Over 70% of Australia’s LNG exports went to Japan in the same period and earned over $AUD12billion. Future energy supply is high on the agenda for Japan. Currently 43% of its primary energy is in the form of imported oil mostly from the Middle East.…

Paper

The Investment Case for Sustainable Ammonia Synthesis Technologies

For 100 years, we have made ammonia with the Haber-Bosch process, almost always using a fossil fuel feedstock. Recently, though, government policy, academic innovation, commercial opportunity, and human morality have combined to spur the development of new, “green” ammonia manufacturing processes: sustainable, low-carbon technologies. These new synthesis methods augur a future in which, instead of the single, over-riding drive toward the economies of scale associated with Haber-Bosch, an array of different feedstocks, uses, and business models will support a multiplicity of competing technologies serving multiple markets. This presentation aims to introduce the factors affecting the appetite for commercialization and adoption…