Paper

High Efficiency Electrochemical Synthesis of Ammonia from Nitrogen at Ambient Temperature and Pressure

Ammonia as well as being an important fertiliser is being increasingly considered as an easily transported carrier of hydrogen energy. However, the traditional Haber-Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive. Newer technology is being investigated to produce sustainable ammonia from green energy. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. Researchers from Monash University have obtained faradaic efficiency as high as 60% using liquid salt electrolytes under ambient conditions,…

Article

International R&D on sustainable ammonia synthesis technologies

Over the last few weeks, I've written extensively about sustainable ammonia synthesis projects funded by the US Department of Energy (DOE). While these projects are important, the US has no monopoly on technology development. Indeed, given the current uncertainty regarding energy policy under the Trump administration, the US may be at risk of stepping away from its assumed role as an industry leader in this area. This article introduces seven international projects, representing research coming out of eight countries spread across four continents. These projects span the breadth of next-generation ammonia synthesis research, from nanotechnology and electrocatalysis to plasmas and ionic liquids.

Paper

Developments in Electrochemical Ammonia Synthesis

Proton Energy Systems, d/b/a Proton OnSite, is a technology and commercialization leader in the field of membrane based electrolysis. The company was founded on the vision of utilizing electrolysis technology for the capture and storage of energy in high value applications. Recently, the concept of storing electrical energy in the form of a carbon neutral liquid fuel, particularly ammonia, has been gaining traction within the research investment community. Proton has been participating in collaborative research with the University of Minnesota to advance the system concept for distributed ammonia production using wind-derived hydrogen (via electrolysis) and subsequent conversion to ammonia using…

Paper

Electro-Synthesis of Ammonia for Grid Scale Energy Storage

Ceramatec Inc., in partnership with its partners, will develop a lower temperature and higher efficiency membrane process to synthesize ammonia for energy storage. Ammonia (NH3) is carbon-free, has a high energy density (>4 kW/l), which enables many hours of energy storage from large renewable power projects in small areas, and can be back converted to electricity using turbines or fuel cells at high efficiency. Ammonia synthesis is currently carried out in very large Haber-Bosch plants, mostly fueled from natural gas. The current large-scale Haber-Bosch (H-B) technology needs to run at constant inputs of energy and reactants. Moreover, ammonia is an…

Paper

Overview of the KIER’s Electrochemical Ammonia Synthesis – Present State and Perspective

Ammonia has a potential as a carbon-free energy carrier since it contains 17.6wt% of hydrogen and can be easily stored and transported safely and efficiently. The state-of-the-art industrial process for ammonia production is the Haber-Bosch process. Although high temperature (450–500 °C) and pressure (150–300 bar) are used to dissociate triple-bonded nitrogen and to maximize the ammonia formation, the efficiency of the Haber–Bosch process is limited to 10–15%. Moreover, the process accompanies high greenhouse gases emission since hydrogen is produced from natural gas. In order to overcome the drawbacks of the Haber-Bosch process, the electrochemical ammonia synthesis has been developed as…

Paper

Applications of hydrogen permeable membranes in ammonia synthesis and decomposition

It is well known that ammonia is being considered as a method of storing hydrogen. Although some fuel cells are being developed that can use ammonia directly as a fuel source, many fuel cell technologies still require an outside cracker to revert ammonia back into hydrogen for efficient use. In this regard, hydrogen permeable membranes, such as Pd and its alloys, have been targeted as potential membrane reactors in which the ammonia is cracked while the hydrogen is simultaneously separated. Pd and its alloys are expensive, but offer potentially perfect hydrogen purity that is highly preferable for certain fuel cells…

Paper

Progress in the Electrochemical Synthesis of Ammonia

Ammonia is one of the most important and widely produced chemicals worldwide with a key role in the growth of human population. Nowadays, the main route for ammonia synthesis is the Haber-Bosch process, developed one century ago. In this process, Fe-based catalysts are usually employed at temperatures between 400 and 500°C and pressures between 130 and 170 bar. As opposed to the industrial process, in nature, plants and bacteria have been producing ammonia for millions of years at mild conditions. Atmospheric nitrogen is reduced by solvated protons on the FeMo cofactor of the metalloenzyme nitrogenase. The natural method of nitrogen…

Paper

Effects of cathodic materials on the electrochemical ammonia synthesis from water and nitrogen in molten salts at atmospheric pressure

Electrochemical synthesis of ammonia from water and nitrogen at atmospheric pressure could be an alternative to the current ammonia synthesis process (i.e. Harbor-Bosch) and solve the inherent problems of the process including its high energy consumption and greenhouse gas emission. This study reports electrochemical ammonia synthesis from water and nitrogen in molten salts at atmospheric pressure and temperatures exceeding 623K. Modifications on surface materials of the nitrogen activation electrode were made, tested, and their ammonia synthesis rates were compared.

Paper

Electrochemical Ammonia Synthesis from Water and Nitrogen using Solid State Ion Conductors

Besides its current applications, ammonia (i.e. carbon-free fuel) could play important roles in preparing for oil depletion and coping with climate change since it releases only nitrogen and water when burned. Ammonia contains 17.6wt% of hydrogen and has significant advantages over hydrogen in storing and transporting energy. The current industrial ammonia production is based on the Haber-Bosch process, which has the drawbacks of high greenhouse gas emission, reaching up to 2.16 kg CO2/kg NH3 and large energy consumption over 30 GJ/ton NH3 resulting from the production of the reactants and the high pressure-high temperature synthesis of ammonia. In order to…