The Ammonia Transition: panel wrap-up from the Ammonia Energy Conference

What key challenges lie ahead as ammonia producers embark on the transition to low and zero-carbon ammonia? What are the big producers already doing to smooth and later accelerate this transition? On November 19, 2020, the Ammonia Energy Association (AEA) hosted a panel discussion moderated by Steve Crolius from Carbon Neutral Consulting, as well as panel members Sammy van den Broeck from Yara, Ashraf Malik from CF Industries, and Trevor Williams from Nutrien as part of the recent Ammonia Energy Conference.


Hydrogen Forward, as the United States pivots to clean energy policy

At the start of this month, a coalition of eleven corporations launched a new advocacy body, Hydrogen Forward, with the explicit purpose of lobbying the United States government to pursue a national hydrogen strategy. "While Europe and East Asia have committed to investing hundreds of billions of dollars into hydrogen solutions, the U.S. is the only major market without a national hydrogen strategy. A comprehensive approach is critical because it provides a much-needed framework to enable fast, large-scale adoption."


Monash team publishes Ammonia Economy Roadmap

Earlier this month, Doug MacFarlane and his team of researchers at Monash University published A Roadmap to the Ammonia Economy in the journal Joule. The paper charts an evolution of ammonia synthesis “through multiple generations of technology development and scale-up.” It provides a clear assessment of “the increasingly diverse range of applications of ammonia as a fuel that is emerging,” and concludes with perspectives on the “broader scale sustainability of an ammonia economy,” with emphasis on the Nitrogen Cycle. The Roadmap is brilliant in its simple distillation of complex and competing technology developments across decades. It assesses the sustainability and scalability of three generations of ammonia synthesis technologies. Put simply, Gen1 is blue ammonia, Gen2 is green ammonia, and Gen3 is electrochemical ammonia. It also outlines the amount of research and development required before each could be broadly adopted (“commercial readiness”). The paper thus provides vital clarity on the role that each generation of technology could play in the energy transition, and the timing at which it could make its impact.


Green ammonia plants win financing in Australia and New Zealand

In recent weeks, governments in Australia and New Zealand have announced major financial awards to accelerate development of local green ammonia plants. In Australia, ARENA awarded AU $995,000 (US $0.6 million) to Yara and ENGIE for their solar ammonia pilot at Yara Pilbara. In New Zealand, the Provincial Growth Fund gave NZ $19.9 million (US $11.3 million) to Ballance-Agri Nutrients and Hiringa Energy for their wind-fed ammonia plant at Kapuni. Both projects will demonstrate that an existing fossil ammonia plant can be decarbonized in increments. Renewable hydrogen can be introduced in small amounts, displacing only a fraction of the plant's natural gas consumption but demonstrating and de-risking the technologies. Then, the renewable energy farms and electrolyzers can be scaled-up in stages, eventually replacing all the natural gas requirements and completing the conversion of a fossil asset to a renewable asset.


Gigastack Phase 2 Receives Funding in the UK

Earlier this week the United Kingdom’s Department for Business, Energy & Industrial Strategy (BEIS) announced that a group led by ITM Power has been awarded GBP 7.5 million (USD $9.7 million) for the second phase of a renewable hydrogen project dubbed “Gigastack.” According to the BEIS announcement, “Gigastack will demonstrate the delivery of bulk, low-cost and zero-carbon hydrogen through ITM Power’s gigawatt scale polymer electrolyte membrane (PEM) electrolysers . . .” with the goal of “dramatically reduc[ing] the cost of electrolytic hydrogen.” The hydrogen produced will be used for petroleum refining, although the project partners have their eyes on opportunities that go well beyond desulfurization of oil.


Gigawatt-scale electrolyzer manufacturing and deployment

ANNUAL REVIEW 2019: Electrolyzers have featured heavily at this year's Ammonia Energy Conference, which ended today. How much can innovation increase efficiency? How far can volume manufacturing drive down capex? How much could process integration with Haber-Bosch deliver improved ammonia production? How realistically can new, sophisticated strategies optimize variable and baseload power inputs? These technical questions are all important, but none defines profitability. While progress is being made on all these fronts of research and development, major industrial projects are still moving forward.


Solid Oxide Technology for Ammonia Production and Use

The presentation will outline a 4 million € project funded by the Danish Energy Agency. The project is coordinated by Haldor Topsøe A/S and the partners are Vestas Wind Power, Ørsted, Energinet, Equinor, DTU Energy Conversion, and Aarhus University. The purpose of the project is to demonstrate a novel process for generation of ammonia synthesis gas without an air separation unit by means of Solid Oxide Electrolyzer Cells as well as using ammonia as a fuel for Solid Oxide Fuel Cells. The synthesis gas generation plant will be a 50 kW unit. The SOFC unit test will be carried out…


Israeli Group Develops New Electrolysis Technology

Last month a group of researchers from the Technion Israel Institute of Technology published a paper, “Decoupled hydrogen and oxygen evolution by a two-step electrochemical–chemical cycle for efficient overall water splitting,” in the journal Nature Energy.  The key word in the title is “efficient.”  In a September 15 Technion press release, the researchers state that their technology “facilitates an unprecedented energetic efficiency of 98.7% in the production of hydrogen from water.”  Applied to the appropriate use case, the technology could lead to a major improvement in green ammonia’s ability to compete with brown ammonia and other low-carbon energy carriers.


Yara and Nel collaborate to reduce electrolyzer costs; announce green ammonia pilot in Norway by 2022

This week, two Norwegian companies, fertilizer producer Yara and electrolyzer manufacturer Nel, announced an agreement to test Nel's "next generation" alkaline electrolyzer at an ammonia production site. The parties expect to begin operating a 5 MW prototype in 2022, feeding green hydrogen directly into Yara's 500,000 ton per year ammonia plant at Porsgrunn.