Paper

Realisation of Large-Scale Green Ammonia Plants

The global ammonia production is nowadays mostly based on fossil energy carriers (natural gas, coal, naphtha, etc.). It consumes approximately 1.4% fossil energy carriers and releases more than 1.4% of global CO2 emissions. In order to continue the global transition from the fossil fuel and nuclear energy age to the renewable energy age, ammonia could play a key role. Beside the continued utilization for fertilizer industry, ammonia could become an energy and/or hydrogen carrier as well. thyssenkrupp Industrial Solutions (tkIS) developed a concept to establish Green Ammonia Plants as an alternative to conventional world-scale ammonia plants. As industry leader in…

Paper

Roadmap to All Electric Ammonia Plants

Haldor Topsøe A/S is a world leading supplier of technology and catalyst for the ammonia industry. It is also a developer of Solid Oxide Electrolyzer technology. A road map towards all electrical ammonia plants of the future has been worked out implementing at first steps hybrid natural gas based/classical electrolyzer technology and ultimately SOEC based plants without air separation units.

Paper

Solid Oxide Cell Enabled Ammonia Synthesis and Ammonia Based Power Production

Haldor Topsøe’s leading role as supplier of ammonia synthesis catalysts and technology is well known. The company has, however, also been active for decades in developing Solid Oxide Cell based stacks and systems. The presentation will describe a novel, highly integrated process for ammonia synthesis based on Solid Oxide Electrolysis. The energy efficiency is very high due to ability of the SOEC to use steam generated from the synthesis reaction heat in the ammonia synthesis loop and the favorable thermodynamics of high temperature electrolysis. Experimental results from hydrogen generation from steam using SOEC and power production from ammonia using Solid…

Paper

Solar Hydrogen and Ammonia System Status

Further development results of the Raphael Schmuecker Memorial Solar Hydrogen and Ammonia prototype plant, discussing making of Nitrogen and Ammonia, the energy usage, and the general system efficiencies and output. We would also like to discuss our results of dyno testing the Hydrogen / Hydrogen & Ammonia tractor engine and further developments in ammonia fuel vaporization.

Paper

Using Renewable Energy to Produce NH3

Commercial production of Ammonia (NH3) is a large scale industrial process converting natural gas (or other fossil fuels) into gaseous hydrogen, which is catalytically reacted with nitrogen to form anhydrous liquid NH3. NH3 made from natural gas is responsible for approximately 5% of global natural gas consumption (around 2% of world energy). Hydrogen can be produced more simply and more sustainably by the electrolysis of water using renewable electricity. Thus decoupling NH3 production from fossil fuels and substantially decarbonising the process. This provides a means of utilising intermittent renewable electrical power to produce NH3 for use as a fertilizer, fuel…