Article

The Ammonia Academic Wrap: “seamless” cracking, improving Haber Bosch, a novel green power-to-ammonia-to-power solution and a review into the use of ammonia as a fuel

Welcome to the Ammonia Academic Wrap: a summary of all the latest papers, developments and emerging trends in the world of ammonia energy R&D. This week: "seamless" ammonia cracking tech from Northwestern, a new electrolysis catalyst, successful integration of ammonia synthesis and separation for improved efficiency, more research needed into transition metal catalysts for Haber Bosch, a novel, green power-to-ammonia to power system and a review on ammonia as a potential fuel.

Article

The Ammonia Wrap: Haldor Topsøe and Aquamarine to deploy solid oxide electrolysis, green ammonia to carry hydrogen for South Korean steel, and Namibia’s national green ammonia strategy

Welcome to the Ammonia Wrap: a summary of all the latest announcements, news items and publications about ammonia energy. This week: green ammonia from Haldor Topsøe and Aquamarine, "Transhydrogen Alliance", Origin Energy signs deal with Korean steel maker POSCO, Japanese electric utilities move towards ammonia, new funding for CF Industries low-carbon fertiliser in the UK, Japanese partners to study Indonesian blue ammonia output and Namibia's national hydrogen & ammonia strategy.

Article

Cracking Ammonia: panel wrap-up from the Ammonia Energy Conference

When should we be cracking ammonia? How much should we be cracking? How could better cracking technologies open up new end uses? What are the critical challenges still to be overcome for cracking ammonia? On November 17, 2020, the Ammonia Energy Association (AEA) hosted a panel discussion moderated by Bill David from Science and Technology Facilities Council (STFC), as well as panel members Josh Makepeace from the University of Birmingham, Joe Beach from Starfire Energy, Gennadi Finkelshtain from GenCell Energy, Camel Makhloufi from ENGIE, and Michael Dolan from Fortescue as part of the recent Ammonia Energy Conference. All panelists agreed that cracking technology as it stands has a number of key areas to be optimised, particularly catalyst improvements and energy efficiency. But, successful demonstrations of modular, targeted cracking solutions are accelerating the conversation forward.

Article

Ammonia technology portfolio: optimize for energy efficiency and carbon efficiency

Earlier this month, I had the pleasure of speaking at the International Fertilizer Association's (IFA) conference on the subject of Innovations in Ammonia. A key point was the benefit of technology diversification: as with any portfolio, whether an investment account or a global industry's range of available technologies, concentration in any area represents risk, and diversification represents resiliency. Unfortunately, the ammonia industry has grown highly concentrated, and its dependency upon one technology and one feedstock represents significant risk in tomorrow's markets. This article features five charts that aim to demonstrate why energy efficiency is insufficient as the only measure of technology improvement, why it is better to optimize instead of maximize, and why market evolution is necessary to support investment decisions in sustainable ammonia synthesis technologies.

Paper

Ammonia for Energy Storage and Delivery

The Advanced Research Projects Agency (ARPA-E) funds high risk, high reward transformational research to reduce energy related emissions, reduce imports of energy from foreign sources, improve energy efficiency across all economic sectors, and ensure US technological lead in advanced energy technologies, including electrochemical energy storage and transformation for grid scale and automotive applications. Storing energy in the form of liquid fuels has numerous advantages compared to conventional methods of energy storage (ES) such as batteries (high cost, short cycle life), pumped hydro and compressed air (low energy density). Low costs of storage and transportation of liquid fuels enables long-time ES…

Paper

Ammonia Production Using Wind Energy: An Early Calculation of Life Cycle Carbon Emissions and Fossil Energy Consumption

Industry professionals and others have begun to consider the use of ammonia as a substitute for fossil energy in the fuel, fertilizer, and chemical sectors. Several factors are driving this concept; including, energy security concerns, the potential for economic development, and reducing the environmental consequences of fossil energy use. In terms of environmental concerns, it is important to determine the potential impacts of producing ammonia before a major switch to ammonia can be considered. This study examined fossil energy use and carbon emissions in the production of ammonia, using life cycle assessment (LCA) methods to analyze production at a novel…