Paper

Green Ammonia Production Integrated into US Wholesale Power Markets

The High Plains and Rocky Mountain regions of the United States have some of the best renewable energy resources in the world. As more non-dispatchable wind and solar generation is integrated into the power system, it is impacting wholesale power markets. Average wholesale electricity power prices are falling while their volatility is increasing. This creates opportunities for large flexible loads that are capable of consuming energy while prices are low and not consuming energy when prices are high. Result from an analysis of dispatchable fully electric ammonia production integrated into the power system are presented.

Paper

Ammonia As Hydrogen Carrier to Unlock the Full Potential of Green Renewables

For decades, grid-scale energy storage has been used to balance load and demand within an energy generation system composed mainly of base load power sources enabling thus to large nuclear or thermal generating plant to operate at peak efficiencies. Energy storage has contributed over the time to meet peak demand and regulate frequency beside peak fossil fuel power plant who usually provided the bulk of the required energy. In the aforementioned context where inherent variability of the power generation asset was mainly a minor issue, energy storage capacity remains nevertheless limited for economic reason storing electricity during low electricity demand…

Paper

Proton-Based Solid Acid for Ammonia Removal

Large amount of water is a NH3 absorbent in the plant facilities for emergency. NH3 and NH4+ coexist in ammonia water. For example, potential of hydrogen (pH) is 11 in 2500 ppm ammonia water and the ratio of NH3 and NH4+ are 98% and 2%, respectively. The aqueous solution releases NH3 due to the high equilibrium vapor pressure, resulting in increase of the negative effects on the environment. Therefore, in order to reduce ammonia released to the atmosphere, sulfuric acid is added in the aqueous solution. In this case, ammonium sulfate is formed and dissolves in the water. Therefore complicated…

Article

ARPA-E request for information: Pre‐pilot and pilot projects to scale, mature, and advance technologies

ANNOUNCEMENT: The US Department of Energy's Advanced Research Projects Agency (ARPA-E) has published a Request For Information (RFI) focused on supporting scale-up demonstrations of ARPA-E technologies. Unlike normal ARPA-E funding agreements, which typically provide 5%-20% of the financing for bench-scale projects within laboratories, this RFI is geared towards industrial pilot projects, for which ARPA-E would provide "at least 50% cost share."

Article

Hydrogen and Ammonia Discussed in Australian Energy Storage Report

The Australian report Comparison of dispatchable renewable electricity options does the very useful service of quantifying the energy storage landscape in dollars and cents.  It reaches many interesting conclusions, not the least of which is that hydrogen, and by explicit extension, ammonia, is the key option for long-cycle storage.  And while the study’s focus is Australia, “with costs in AUD and based on Australian conditions,” its lead author says that “much of the information and many of its findings are expected to hold independent of jurisdiction.”

Paper

Functionalized Ordered Mesoporous Silica Composites As Potential Ammonia Storage Materials

Ammonia may provide an alternative energy supplier for its strong capability as hydrogen carrier. However, it is a problem that how to storage this kind of chemical at relatively high temperature, for example 300°C in fuel cell. In this work, a composite material based on metal halides and ordered mesoporous silica framework is developed and used to target ammonia at relatively high temperature. The silica framework is fabricated via evaporation induced self-assembly method and has tunable mesoporous structure with addition of hexadecyl trimethyl ammonium bromide (CTAB). Several metal salts at various concentrations are added to the mesoporous framework via wetness…

Paper

Power-to-Ammonia-to-Power (P2A2P) for Local Electricity Storage in 2025

A carbon-free, circular economy is required to decrease greenhouse gas emissions. A commonly named alternative to the carbon-based economy is the hydrogen economy. However, storing and transporting hydrogen is difficult. Therefore, the ammonia economy is proposed. Ammonia (NH3) is a carbon-free hydrogen carrier, which can mediate the hydrogen economy. Especially for long-term storage (above 1 day), ammonia is more economically stored than hydrogen. Transportation costs are greatly reduced by adopting a decentralized energy economy. Furthermore, political-economic factors influence energy prices less in a decentralized energy economy. With small-scale ammonia production gaining momentum, business models for the decentralized ammonia economy are…

Article

Green ammonia demonstration plants now operational, in Oxford and Fukushima

Two new pilot projects for producing "green ammonia" from renewable electricity are now up and running and successfully producing ammonia. In April 2018, the Ammonia Manufacturing Pilot Plant for Renewable Energy started up at the Fukushima Renewable Energy Institute - AIST (FREA) in Japan. Earlier this week, Siemens launched operations at its Green Ammonia Demonstrator, at the Rutherford Appleton Laboratory outside Oxford in the UK. The commercial product coming out of these plants is not ammonia, however, it is knowledge. While both the FREA and Siemens plants are of similar scale, with respective ammonia capacities of 20 and 30 kg per day, they have very different objectives. At FREA, the pilot project supports catalyst development with the goal of enabling efficient low-pressure, low-temperature ammonia synthesis. At Siemens, the pilot will provide insights into the business case for ammonia as a market-flexible energy storage vector.