Paper

Ammonia for Energy Storage and Delivery

The Advanced Research Projects Agency (ARPA-E) funds high risk, high reward transformational research to reduce energy related emissions, reduce imports of energy from foreign sources, improve energy efficiency across all economic sectors, and ensure US technological lead in advanced energy technologies, including electrochemical energy storage and transformation for grid scale and automotive applications. Storing energy in the form of liquid fuels has numerous advantages compared to conventional methods of energy storage (ES) such as batteries (high cost, short cycle life), pumped hydro and compressed air (low energy density). Low costs of storage and transportation of liquid fuels enables long-time ES…

Paper

Life-cycle greenhouse gas and energy balance of community-scale wind powered ammonia production

As well as being an innovative energy source, ammonia is a crucial component of most nitrogen fertilizers. Since the production of ammonia is very energy intensive and currently completely based on fossil energy, there is a considerable interest in developing renewably produced ammonia for use in agriculture and other sectors. This work presents a life cycle assessment (cradle-to-gate) of greenhouse gas (GHG) emissions and primary energy use for ammonia produced at community-scale using renewable wind generated electricity. Two different regions were studied: Minnesota (US) and Sweden. The results show that ammonia produced with wind-generated electricity has significantly lower fossil energy…

Paper

Using Renewable Energy to Produce NH3

Commercial production of Ammonia (NH3) is a large scale industrial process converting natural gas (or other fossil fuels) into gaseous hydrogen, which is catalytically reacted with nitrogen to form anhydrous liquid NH3. NH3 made from natural gas is responsible for approximately 5% of global natural gas consumption (around 2% of world energy). Hydrogen can be produced more simply and more sustainably by the electrolysis of water using renewable electricity. Thus decoupling NH3 production from fossil fuels and substantially decarbonising the process. This provides a means of utilising intermittent renewable electrical power to produce NH3 for use as a fertilizer, fuel…

Paper

Effects of cathodic materials on the electrochemical ammonia synthesis from water and nitrogen in molten salts at atmospheric pressure

Electrochemical synthesis of ammonia from water and nitrogen at atmospheric pressure could be an alternative to the current ammonia synthesis process (i.e. Harbor-Bosch) and solve the inherent problems of the process including its high energy consumption and greenhouse gas emission. This study reports electrochemical ammonia synthesis from water and nitrogen in molten salts at atmospheric pressure and temperatures exceeding 623K. Modifications on surface materials of the nitrogen activation electrode were made, tested, and their ammonia synthesis rates were compared.

Paper

NH3 from Renewable-source Electricity, Water, and Air: Technology Options and Economics Modeling

Our company, Alaska Applied Sciences, Inc. has developed a simple cost modeling tool based on capital recovery factor (CRF), for a client, to analyze, “Under what conditions will the technology in question produce NH3, at a plant gate cost competitive with NH3 from extant sources, from renewable-source electricity, water, and air?” We will report the results of several case assumptions based on Electrolysis plus Haber-Bosch technology. We will also present a catalog of apparently credible technologies for synthesizing NH3 from renewables-source electricity, water, and air.

Paper

Electrochemical Ammonia Synthesis from Water and Nitrogen using Solid State Ion Conductors

Besides its current applications, ammonia (i.e. carbon-free fuel) could play important roles in preparing for oil depletion and coping with climate change since it releases only nitrogen and water when burned. Ammonia contains 17.6wt% of hydrogen and has significant advantages over hydrogen in storing and transporting energy. The current industrial ammonia production is based on the Haber-Bosch process, which has the drawbacks of high greenhouse gas emission, reaching up to 2.16 kg CO2/kg NH3 and large energy consumption over 30 GJ/ton NH3 resulting from the production of the reactants and the high pressure-high temperature synthesis of ammonia. In order to…

Paper

Ammonia Production Using Wind Energy

Industry professionals and others have begun to consider the use of ammonia as a substitute for fossil energy in the fuel, fertilizer, and chemical sectors. Several factors are driving this concept; including, energy security concerns, the potential for economic development, and reducing the environmental consequences of fossil energy use. In terms of environmental concerns, it is important to determine the potential impacts of producing ammonia before a major switch to ammonia can be considered. This study examined fossil energy use and carbon emissions in the production of ammonia, using life cycle assessment (LCA) methods to analyze production at a novel…