Article

Australia Issues National Hydrogen Strategy

Last month the Council of Australian Governments Energy Council – “a Ministerial forum for the Commonwealth [of Australia], states and territories and New Zealand, to work together in the pursuit of national energy reforms” – issued a 137-page report entitled Australia’s National Hydrogen Strategy. For those focused on how ammonia energy will go from promising idea to practical reality, this is what the next step – the one after the discovery of ammonia's virtues as a hydrogen carrier – could look like. The Strategy is detailed, comprehensive, and concerned with both practical measures in the near term and the arc of progress over the long term. And embedded within it are three ideas that are likely to have on-going relevance for ammonia energy implementation.

Paper

Case Study of Ammonia Production in the Island States Using Ocean Thermal Energy

The world’s oceans are the largest collectors and storage of solar energy and have an enormous potential to supply growing worldwide energy demands, commodity products like ammonia and fresh water. This case study focuses on the island states for implementation of the Ocean Thermal Energy Conversion (OTEC) in the foreseeable future within two decades. Small Island Developing States (SIDS) and other island states exclusively rely on petroleum-liquid based power generation, specifically fuel oil and diesel. For example, power generating capacities of Mauritius, Reunion, St Thomas and St Croix are 480 MW, 435 MW, 200 MW and 120 MW, respectively. Fossil…

Paper

Ammonia As Hydrogen Carrier to Unlock the Full Potential of Green Renewables

For decades, grid-scale energy storage has been used to balance load and demand within an energy generation system composed mainly of base load power sources enabling thus to large nuclear or thermal generating plant to operate at peak efficiencies. Energy storage has contributed over the time to meet peak demand and regulate frequency beside peak fossil fuel power plant who usually provided the bulk of the required energy. In the aforementioned context where inherent variability of the power generation asset was mainly a minor issue, energy storage capacity remains nevertheless limited for economic reason storing electricity during low electricity demand…

Article

Ammonia Featured in South Australia’s Hydrogen Action Plan

The Australian state of South Australia took another step into the hydrogen future this week when it unveiled its Hydrogen Action Plan at the International Conference on Hydrogen Safety in Adelaide.  The heart of the Action Plan consists of the practical measures that governments undertake in areas such as infrastructure, workforce, and regulatory framework development.  Zoom out, though, and it is clear that fostering a major export position in green hydrogen is first among equals in the Action Plan's priorities.  And this being the case, it is no surprise that ammonia is singled out for special attention.

Article

Hydrogen Prioritized in New ARENA Investment Plan

On September 11, the Australian Renewable Energy Agency (ARENA) issued its 2019 Investment Plan. The theme of the accompanying press release is “sharpening our focus,” and indeed the agency articulates just three investment priorities: “integrating renewables into the electricity system;” “accelerating the growth of a hydrogen industry;” and “supporting industry to reduce emissions.” The prioritization of hydrogen – and with it, ammonia as a possible hydrogen carrier – is a new development for ARENA.

Article

Engie, Siemens, STFC, and Ecuity awarded funding for green ammonia-to-hydrogen in UK

Last week, the UK Department for Business, Energy and Industrial Strategy (BEIS) announced a "£390 million government investment to reduce emissions from industry," with a focus on low-carbon hydrogen supply and clean steel production. As part of this investment, a consortium led by Ecuity Consulting that includes Siemens, Engie, and the Science & Technology Facilities Council (STFC), has been awarded £249,000 to perform "valuable research on the role of ammonia in the delivery of low cost bulk hydrogen for use in the UK energy system."

Article

IHI Breaks Ground on Hydrogen Research Facility

Japanese capital goods manufacturer IHI Corporation announced last month that it has started construction of a 1,000 square-meter hydrogen research facility in Fukushima Prefecture.  The facility will be an addition to IHI’s Green Energy Center in Soma City which was launched in 2018.  One of the Center’s original focuses is the production steps of the green hydrogen supply chain using solar electricity to power developmental electrolyzers.  The new facility will focus on hydrogen carriers, including ammonia and methane (via “methanation” of carbon dioxide), that can be used in the logistics steps of the supply chain.

Article

Ammonia Figures Prominently in IEA Hydrogen Report

Two weeks ago the International Energy Agency released The Future of Hydrogen, a 203-page report that “provides an extensive and independent assessment of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean, secure and affordable energy future; and how we can go about realising its potential.” In this, the second part of a two-part article, the report's extensive treatment of ammonia is considered.

Article

IEA Releases Forward-Looking Hydrogen Report

Last week the International Energy Agency released The Future of Hydrogen, a 203-page report that “provides an extensive and independent assessment of hydrogen that lays out where things stand now; the ways in which hydrogen can help to achieve a clean, secure and affordable energy future; and how we can go about realising its potential.” In this, the first part of a two-part article, the report's overall strengths are considered.  The second part will focus on the report's discussion of ammonia as a contributor to the emerging hydrogen economy.

Article

NH3 vs. MCH: Energy Efficiency of Hydrogen Carriers Compared

Volume 174 of the journal Energy, published on May 1, 2019, includes a paper by Shin’ya Obara, Professor in the Department of Electrical and Electronic Engineering at the Kitami Institute of Technology in Japan, that should be of interest to hydrogen advocates everywhere.  The paper, "Energy and exergy flows of a hydrogen supply chain with truck transportation of ammonia or methyl cyclohexane," concludes that a hydrogen supply chain based on ammonia has better energy efficiency than one based on methyl cyclohexane (MCH).