Article

Hyundai joins Fortescue and CSIRO to “fast track” ammonia to high-purity hydrogen system

Fortescue recently announced that it has signed a memorandum of understanding (MOU) with Hyundai Motor Company and CSIRO for the “development and future commercialisation” of its metal membrane technology. This technology, which produces high-purity compressed hydrogen from liquid ammonia, was demonstrated in 2018. It enables PEM fuel cell vehicles to refuel using hydrogen that is generated on demand from ammonia. At scale, this technology could enable an ammonia-based hydrogen production, storage, and distribution infrastructure, lowering the barriers to implementation of a national network of hydrogen filling stations. Now, “Hyundai will seek to demonstrate the viability of the technology for renewable hydrogen production and vehicle fuelling in Korea.”

Article

Hydrogen Filling Stations: techno-economic analysis of on-site ammonia reforming and H2 purification

This month, a team of researchers from Fuzhou University in Fujian, China, published a new paper in the journal Sustainable Energy & Fuels that provides a “Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia.” The study concludes that “the H2 production cost of the NH3-fed on-site hydrogen refuelling station was at least 15% lower than other carbon-free routes (such as electrolysis, solar thermolysis, photo-electrolysis, etc.), and comparable to that of a methane steam reforming system with carbon capture and storage.”

Article

This Week in Hydrogen

September 10–14 gave us five remarkable events both evidencing and advancing the rise of hydrogen in transportation and energy. Any one of them would have made it a significant week; together they make a sea change.

Article

ITM Power, Sumitomo Enter Strategic Partnership

ITM Power and Sumitomo Corporation have entered into a strategic partnership “for the development of multi-megawatt projects in Japan based exclusively on ITM Power’s electrolyser products.”  The two companies will also look for collaborative opportunities outside Japan.  In a July 9 press release, ITM refers to the two companies’ shared vision for “the use of hydrogen to decarbonise heat, transport and industrial processes” as the foundation for the arrangement.

Article

On the Ground in Japan: Hydrogen Activity Accelerates

A recent Ammonia Energy post mentioned that in December 2017 “the Japanese government . . . approved an updated hydrogen strategy which appears to give ammonia the inside track in the race against liquid hydrogen (LH2) and liquid organic hydride (LOH) energy carrier systems.”  While this news is positive, the hydrogen strategy remains the essential context for economic implementation of ammonia energy technologies in Japan; ammonia’s prospects are only as bright as those of hydrogen.  This is why Ammonia Energy asks from time to time, how is hydrogen faring in Japan?

Article

[email protected] in California: A Role for Ammonia?

The U.S. Department of Energy [email protected] program’s November 2017 workshop in California included mention of ammonia as a constituent of a future hydrogen economy. It also highlighted the relevance ammonia energy could have in California. California stands out globally as a large economy that is strongly committed to development of a hydrogen economy. The state’s strategy for hydrogen-powered transportation involves reducing the production cost of renewable hydrogen and the capital and operating costs of hydrogen fueling stations. It does not explicitly address the cost of intermediate hydrogen logistics. The question of cost is of utmost importance because California has so far put $120 million of public funds into hydrogen fueling stations and intends to invest an additional $20 million per year through 2022. The state’s aspiration is to move to a point where hydrogen that is used as a motor fuel is free of public subsidy. So it clearly behooves the state to investigate how ammonia could be used as a cost-reducing energy carrier. Toyota is active in California’s hydrogen movement and has announced plans to build a renewable hydrogen plant that will use cow manure as a feedstock. A project with a different conception, one that draws upon the solar and wind resources of the Mojave Desert to produce renewable hydrogen and logistically advantaged ammonia, would align better with the state’s sustainability objectives.

Article

BOC/Linde Embraces Ammonia-Based Hydrogen Fueling Technology

Dateline Sydney, August 22, 2017.   Industrial gas vendor Linde Group (under its BOC brand) confirms its participation in a previously announced Australian ammonia-energy project.  With the Commonwealth Scientific and Industrial Research Organization (CSIRO) in the lead, the project partners will build and operate a pilot-scale “ammonia-to-hydrogen cracking” facility that showcases CSIRO’s hydrogen purification membrane technology.  BOC/Linde will contribute goods and services valued at AUD$100,000 (USD$80,000) to the AUD$3.4 million project.

Article

CSIRO Membrane: Ammonia to High-Purity Hydrogen

In Australia this week, CSIRO announced funding for the "final stages of development" of its metal membrane technology to produce high-purity hydrogen from ammonia. The two year research project aims to get the technology "ready for commercial deployment," with industrial partners including Toyota and Hyundai.

Article

On the Ground in Japan: LH2 and MCH Hydrogen Fueling Stations

While Japan’s Cross-Ministerial Strategic Innovation Promotion Program (SIP) continues to evaluate liquid hydrogen (LH2), methylcyclohexane (MCH), and ammonia as hydrogen energy carriers, Japanese press reports show that the backers of liquid hydrogen and MCH are building an early lead over ammonia with hydrogen fueling stations based on their favored commodities.