Catalytic Membrane Reactors for Efficient Delivery of High Purity Hydrogen from Ammonia Decomposition

The deployment of fuel cell electric vehicles is constrained by the paucity of hydrogen fueling stations and price, which is dominated by the costs of hydrogen storage and transportation. With more hydrogen per volume than liquid H2 and an extensive distribution infrastructure in place, ammonia is a promising vector for efficient hydrogen distribution. In this talk we describe the development of innovative catalytic membrane reactor (CMR) technology for the delivery of high purity H2 from ammonia cracking. The CMR integrates state-of-the art catalysts with thin metal membranes in an innovative design. Conventionally, the catalyst is supplied to CMRs in the…


Ammonia As a Hydrogen Carrier for PEM Fuel Cells

Ammonia (NH3) is easily liquefied by compression at 1 MPa and 25°C, and has highest volumetric hydrogen density of 10.7 kg H2 /100L. It has high gravimetric hydrogen density of 17.8 wt%. The heat of formation of NH3 is about 1/10 of combustion heat of hydrogen. NH3 has advantages as a hydrogen carrier for fuel cell vehicles (FCVs). ISO 14687-2:2012 specifies the quality characteristics of hydrogen fuel. The maximum concentration of NH3 and N2 for the FCVs is 0.1ppm and 100 ppm, respectively. The minimum H2 purity is 99.97%. We need component technologies to produce high-purity hydrogen from ammonia, together…


Sawafuji Moves toward Commercialization of NH3-to-H2 System

On May 28 Sawafuji Electric Company issued a press release detailing advances made over the last year on the ammonia-to-hydrogen conversion technology it has been jointly developing with Gifu University.  The main area of progress is the rate of hydrogen generation, but the key takeaway from the announcement is that Sawafuji has set a schedule that culminates in product commercialization in 2020.