Article

Picking bunker winners: the mono-fuel / dual-fuel duel

This week, DNV GL published its annual Maritime Forecast to 2050, concluding that “e-ammonia, blue ammonia and bio-methanol are the most promising carbon-neutral fuels in the long run.” DNV GL’s assumptions that determine this long run, however, suggest a significant mid-term reliance on fossil LNG. This risks locking the industry into a long-term emissions trajectory incompatible with the IMO’s 2050 GHG targets, in part because of significant fuel supply and infrastructure investments. These investments could become more ‘sticky’ than expected. A host of alternative opinions have been published in the days before and after DNV GL published its report. These suggest that, for ammonia, the long run could begin this decade. Among others, MAN ES has announced that its ammonia engine will be available for retrofits by 2025.

Article

Wärtsilä Tests Internal Combustion of Ammonia

Last week Wärtsilä, the Finnish engine and energy equipment manufacturer, unveiled the latest stage in its engagement with ammonia as an energy vector. In a press release headlined “Wärtsilä advances future fuel capabilities with first ammonia tests,” the company described a test program aimed at exploring ammonia’s properties as an internal combustion fuel. Kaj Portin, General Manager of Fuel & Operational Flexibility in Wärtsilä’s Marine division, commented that “the first tests have yielded promising results.”

Article

Literature Review: Ammonia as a Fuel for Compression Ignition Engines

The diesel engine, also known as the compression ignition (CI) engine, has been a workhorse of the modern energy economy for more than a hundred years. Its role in the coming sustainable energy economy will be determined by its ability to co-evolve with climate-friendly fuels. Two researchers from the National Institute of Advanced Industrial Science and Technology in Japan have now examined the fit between ammonia and the CI engine. Pavlos Dimitriou and Rahat Javaid arrive at a two-part conclusion in their paper, “A review of ammonia as a compression ignition engine fuel,” published in January in the International Journal of Hydrogen Energy. Part one is good news: “Ammonia as a compression ignition fuel can be currently seen as a feasible solution.” Part two is a dose of qualifying reality: to manage emissions of N2O, NOx, and unburnt NH3, “aftertreatment systems are mandatory for the adaptation of this technology,” which means that ammonia-fueled CI engines are likely to be feasible “only for marine, power generation and possibly heavy-duty applications where no significant space constraints exist.”

Article

Korean Register Sees Ammonia as Preferred Alternative Maritime Fuel

Last week the classification society Korean Register of Shipping (KR) released Forecasting the Alternative Marine Fuel: Ammonia, a “technical document on the characteristics and the current status of ammonia as ship fuel.” One hesitates to take the title too literally, but the report really does forecast that ammonia will be the alternative marine fuel. Over the last year, a number of maritime transport stakeholders – engine producers, government agencies, other classification societies – have identified ammonia as a promising means of industry decarbonization. But in joining the group, KR makes a notably explicit and complete case in ammonia’s favor.

Article

MAN ammonia engine update

In November 2019, MAN ES published a technical paper describing the design and performance of its two-stroke green-ammonia engine. The paper also quietly announces the intentions of MAN ES to exploit ammonia energy technologies in a new business case, Power-to-X (PtX, "the carbon-neutral energy storage and sector coupling technology of the future"). In other words, MAN is moving into green ammonia fuel production.

Paper

High-Efficiency Two-Stroke Internal Combustion Engine

Long-term storage of electricity generated from variable renewable energy resources sources can be achieved by converting the electricity into the chemical energy of a combustible fuel. The conversion process usually involves electrolysis of water to produce hydrogen, which may either be stored directly as a high pressure gas or converted to a more energy-dense fuel such as ammonia. In either case, the fuel can be stored for days, weeks, or even months and then, when its energy is needed, it can be burned in a heat engine. The heat engine can be used to drive an electrical generator, thereby reclaiming…

Paper

Our Improved Farm Tractor Ammonia and Hydrogen Fueling System

We have a large farm tractor that is fueled by a mixture of ammonia and hydrogen, or hydrogen alone. We will briefly describe the fueling and ignition improvements that have been made to the engine, and quantify the performance increases. These improvements can be applied to other internal combustion engine applications. This tractor runs only on renewable and CO2 free fuels.

Paper

Fuel Transition Scenarios for the Maritime Industry up to 2050

This paper will present some of the University College London Energy Institute’s recent and ongoing work on likely fuel transition scenarios for the maritime industry, and discuss potential scenarios under which ammonia could become a substantial fuel for shipping (i.e. carbon price, developments vs hydrogen, costs, and non-market factors).

Article

Maritime ammonia engines in Japan; ammonia shipbuilding in South Korea

This week, Japan Engine Corporation (J-ENG) announced the launch of a new R&D program, in collaboration with the National Maritime Research Institute, that focuses on engine development for "combustion of carbon-free fuel (e.g. hydrogen and ammonia)." Five hundred miles across the Sea of Japan, DSME has completed a techno-economic feasibility study comparing three fuels: HFO (with scrubber), LNG, and ammonia. The results of this study will be presented at the Ammonia Energy Conference, in Orlando, FL, on November 13. DSME is one of the three big shipbuilders in South Korea, and its business case for ammonia is strong enough that now "DSME is planning to expand our technology and business to NH3 engineering and systems for commercial ships."