3rd generation ammonia synthesis: new catalysts & production pathways

We look at four new developments this week:

1. A team from DTU Energy and the Dalian Institute of Chemical Physics have uncovered a new class of alternative catalysts for mild condition ammonia synthesis. The ternary ruthenium complex hydrides Li4RuH6 and Ba2RuH6 avoid the energy-intensive pathway of nitrogen dissociation in a "synergistic" manner.

2. A team from the Korea Institute of Machinery and Materials reported a highly selective (95%) plasma ammonia synthesis method.

3. A team from Delft University of Technology has presented an present an "unconventional electrochemical design" that physically separates hydrogen and dinitrogen activation sites.

4. A team at the Max Planck Institute for Coal Research has demonstrated a new mechanochemical ammonia synthesis system that operates at room temperature and pressures as low as 1 bar.


The Ammonia Wrap: EU ambitions, new tankers, and GW scale green ammonia in Denmark, Norway, and Chile

Welcome to the Ammonia Wrap: a summary of all the latest announcements, news items and publications about ammonia energy. In this week's wrap: HyDeal Ambition, new marine tankers, fuel forecasts & SOFC developments, a new technical briefing on power generation, UNSW leads research in P2X, GWs of green ammonia in Denmark, Norway and Chile, green ammonia in the Orkneys, new government focus on ammonia in South Africa, and India to make green ammonia production mandatory?


Ammonia Yields during Plasma-Assisted Catalysis Boosted By Hydrogen Sink Effect

Plasma-catalytic ammonia synthesis is known since early 1900s but the possible reaction pathways are currently under investigation. In this article, we present the use of various transition metals and gallium-rich alloys for plasma-catalytic ammonia synthesis. The best three metallic catalysts were identified to be Ni, Sn and Au with the highest ammonia yield of 34%. Furthermore, as compared to its constituent metals some alloys presented about 25-50% better yields. The metals employed were classified in two different categories according to their behavior during ammonia plasma-catalysis. Category I metals are nitrophobic and the measured concentration of Hα in the gas phase…


Synthesis of Ammonia By RF Non-Thermal Plasma over Ni-MOF-74

Herein, we demonstrate a synergistic approach consisting on radiofrequency plasma to synthesize ammonia in the presence of Ni-MOF-74 as catalyst. The Ni-MOF displayed higher ammonia yields as com-pared to the pure Ni metal. Specifically, ammonia yields as high as 0.23 g-NH3 (kWh-g-catalyst)-1 and energy cost of 265 MJ mol-1 over Ni-MOF were observed. The enhanced catalytic activity of the Ni-MOF in the presence of plasma was attributed to the presence of pores that improved mass transfer of guest and product molecules during reaction, the presence of open Ni metal sites, and lower surface hydrogen re-combination. Furthermore, the ammonia energy yield…


Microwave Catalysis for Ammonia Synthesis Under Mild Reaction Conditions

A scalable, cost-effective catalytic process of ammonia synthesis is developed by using microwave excitation under mild reaction conditions. In this research project funded by DOE ARPA-E, our interdisciplinary team of WVU, NETL, PNNL, FSU and two industrial partners have demonstrated that ammonia synthesis can be carried out at 200-300 °C and ambient pressure. This transformational process integrates system elements of electromagnetic sensitive catalysts and microwave reactor design. Taking advantages of state-of-the art non-equilibrium microwave plasma technology, catalytic ammonia synthesis undergoes a new reaction pathway where the barrier for the initial dissociation of the dinitrogen is decoupled from the bonding energy…


Ammonia Synthesis Via Radiofrequency Plasma Catalysis

Introduction: In 1909, a compound named Ammonia was discovered. Through the 20th century, the immense potential of this chemical was exploited by using in almost every product, from process industry for fertilizer and chemical production to every use in cosmetics, household cleaners and medicines. Recently, fuel cells operating on liquid ammonia as working fluid have been developed on research scale. Despite of using 1-2% of total energy production for the synthesis of this compound, no significant changes have been made to the process since the first Haber-Bosch process plant has been setup. Plasma catalysis is the use of plasma and…


Atmospheric-Pressure Synthesis of Ammonia Using Non-Thermal Plasma with the Assistance of Ru-Based Multifunctional Catalyst

Ammonia has much more uses than being a fertilizer. Its emerging applications include hydrogen carrier, fuel cells, clean transportation fuels, and other off-grid power applications. The traditional Haber Bosch process used to synthesize ammonia must be achieved at high temperature and pressure. The non-thermal plasma (NTP) allows for the synthesis of ammonia at a lower temperature and pressure conditions. It is proposed that the moderate process conditions can potentially allow a more economical construction and operation of ammonia production systems on distributed farms and renewable hydrogen production sites. In this study, we report the NTP synthesis of ammonia using dielectric…


International R&D on sustainable ammonia synthesis technologies

Over the last few weeks, I've written extensively about sustainable ammonia synthesis projects funded by the US Department of Energy (DOE). While these projects are important, the US has no monopoly on technology development. Indeed, given the current uncertainty regarding energy policy under the Trump administration, the US may be at risk of stepping away from its assumed role as an industry leader in this area. This article introduces seven international projects, representing research coming out of eight countries spread across four continents. These projects span the breadth of next-generation ammonia synthesis research, from nanotechnology and electrocatalysis to plasmas and ionic liquids.