Article

A road ahead via lithium-mediated electrochemical nitrogen reduction?

Realisation of electrochemical nitrogen reduction to ammonia has proven to be a herculean scientific challenge. Recently, a focus on Lithium-mediated synthesis has delivered promising results. Last year a team from Monash University in Australia unveiled their phosphonium “proton shuttle” method, and this year have reported nearly 100% Faradaic efficiency for the reaction (with promising reaction rates). Late last year, a team from the Technical University of Demark (DTU) reported that addition of small amounts of oxygen gas drastically increased Faradaic efficiencies and production rates. The results push electrochemical synthesis R&D ever-closer to elusive benchmarks set for commercial realisation.

Paper

Nitrogen Reduction Reaction at High Current-to-Ammonia Efficiency

Apart from its use in the fertiliser and chemical industries, ammonia is currently attracting our community as a potential carbon-neutral fuel and as an energy carrier for worldwide transportation of renewable sources. To achieve this goal, replacements of the conventional hydrocarbon deposit-based technology for NH3 production require to be a green but inexpensive and scale-flexible technology, namely the only genuine electrochemical lithium-mediated nitrogen reduction reaction (Li-NRR). Reported by many research groups around the world, the process had so far been hampered by poor yield rates and efficiencies. At Monash University, we introduced a compact ionic assembly arranged in the electrode-electrolyte…

Paper

High-productivity electrosynthesis of ammonia from dinitrogen

The so-called lithium redox-mediated nitrogen reduction reaction presents the only known process enabling genuine electrochemical conversion of N2 to ammonia. Notwithstanding the rapidly increasing investigative efforts, the commonly reported performances of the Li-mediated N2 electroreduction, viz. yield rate, current-to-ammonia (faradaic) efficiency and durability in operation, still pertain to the domain of academic research rather than practical development. Our most recent work focused on redesigning the key components of the electrolytic N2 reduction cell enabled breakthroughs in all the key metrics of the process. Specifically, we have introduced a stable proton shuttle based on the phosphonium cation that delivers protons to…

Article

The Ammonia Academic Wrap: “seamless” cracking, improving Haber Bosch, a novel green power-to-ammonia-to-power solution and a review into the use of ammonia as a fuel

Welcome to the Ammonia Academic Wrap: a summary of all the latest papers, developments and emerging trends in the world of ammonia energy R&D. This week: "seamless" ammonia cracking tech from Northwestern, a new electrolysis catalyst, successful integration of ammonia synthesis and separation for improved efficiency, more research needed into transition metal catalysts for Haber Bosch, a novel, green power-to-ammonia to power system and a review on ammonia as a potential fuel.

Paper

Arpa-E Refuel Program: Distributed Production of Ammonia and Its Conversion to Energy

Ammonia, which has high energy density in easily produced liquid form and can be converted to electric or motive power, is considered to be an almost ideal non-carbon energy vector in addition to its common use as a fertilizer. It can be manufactured anywhere using the Haber-Bosch process, effectively stored, transported and used in combustion engines and fuel cells as well as a hydrogen carrier. Transition from fossil fuels as the energy source and feedstock to intermittent renewable energy sources will require a shift from large scale Haber-Bosch plants (1,000 – 1,500 t/day) to distributed ammonia production matching electrical power…

Paper

Solar Hydrogen and Ammonia System Status

Further development results of the Raphael Schmuecker Memorial Solar Hydrogen and Ammonia prototype plant, discussing making of Nitrogen and Ammonia, the energy usage, and the general system efficiencies and output. We would also like to discuss our results of dyno testing the Hydrogen / Hydrogen & Ammonia tractor engine and further developments in ammonia fuel vaporization.