Paper

Sustainable Ammonia Production from Sun, Air and Water

There is an ever growing demand for ammonia production that already reached globally 200 million tons per year by 2018 and is forecasted to increase to over 350 million tons per year by 2050 [1]. The application segment is dominated by the fertilizer industry, since the most important fertilizer and the world’s most widely produced chemical is urea. Ammonia is synthesized via the Haber-Bosch process, for which the required hydrogen and nitrogen are currently provided by using fossil fuels. This work proposes a novel approach to produce ammonia from the raw materials water and air only by utilizing solar energy…

Paper

Creating a Redox Materials Database for Solar-Thermochemical Air Separation and Fuels Production

Converting heat from renewable sources into other forms of energy is considered an essential factor in the reduction of greenhouse gas emissions. For instance, high temperatures can be reached using concentrated solar power (CSP), and the thus-captured energy can be converted into so-called solar fuels via thermochemical processes. These consist of the partial reduction of a redox material, usually a metal oxide, at high temperatures following the exothermic re-oxidation of this material at a lower temperature level using steam or CO2, which are thus converted into hydrogen or carbon monoxide, respectively. These two gases can be combined to generate syngas…

Paper

Screening Binary Redox Pairs for Solar Thermochemical Ammonia Synthesis Using Machine Learned Predictions of Gibbs Formation Energies at Finite Temperatures

Solar thermochemical ammonia synthesis (STAS) is a reduction/oxidation (redox) cycle which enables the production of ammonia (NH3) from air, water, and concentrated sunlight. In this process, a metal nitride (MN) is oxidized by steam to produce a metal oxide (MO) and NH3; the resulting MO is reduced at high temperature (driven by concentrated solar radiation) and subsequently used to reduce atmospheric nitrogen (N2) and reform the MN and restart the NH3 synthesis cycle. The identification of optimal redox pairs (MO/MN) for this process has been historically limited by the lack of thermochemical data (i.e., Gibbs formation energies at finite temperatures)…