Paper

Optimizing Absorptive Separation for Intensification of Ammonia Production

High pressure requirements of Haber-Bosch process imposes substantial operating (e.g., compression) and capital (compressor cost, advanced costly alloys, thick reactor casing, etc.) expenses in the ammonia production. Cost considerations force ammonia producers to take advantage of the economy of scale to drive down the manufacture cost, while small and energy-efficient processes that can be powered with off-grid renewable energy are required for ammonia-mediated hydrogen economy. Small-scale reaction-absorption process is proposed to be a viable technology to reduce the operating pressure requirements of Haber-Bosch process.1–4 Here, we present an overview of our efforts to further intensify ammonia production via reaction-absorption process.…

Paper

From Micro to Mega, how the green ammonia concept adapts

Green ammonia concepts from thyssenkrupp are available from 50 to over 5000 tonnes per day. Variability of electrolytic hydrogen feed presents one of the biggest and unique challenge in achieving an optimal and stable functioning of the Haber-Bosch synthesis loop. The solutions to these challenges require a customised approach, dependent on scale and power generation mix of the of the facility. At thyssenkrupp, Australia, we offer local expertise in optimising the concepts for your small and large scale green ammonia applications, underpinned by our know how as a world leading electrolysis and ammonia technology supplier.

Article

RAPID: supporting modular manufacturing and process intensification for small-scale ammonia

Using greener feedstocks at low pressures and temperatures, with higher conversion rates and less greenhouse gases is considered a pipe dream. The technology and equipment simply wasn’t available ... until now. The case for small-scale, energy efficient ammonia production is well documented, but access to funds may not be. Now, Manufacturing USA and the Manufacturing Extension Partnership may offer a new path to success.

Paper

Advances in Making High Purity Nitrogen for Small Scale Ammonia Generation

The presentation will address recent developments in the Solar Hydrogen Demonstration Project in which hydrogen, nitrogen and ammonia are made from solar power, water, and air; and used to fuel a modified John Deere farm tractor. In industrial applications very pure nitrogen is made by cryogenic distillation of air. Using Pressure Swing Absorption systems alone it is extremely difficult to achieve the required purity. An improved method was developed for making high purity nitrogen, for smaller systems. Will discuss how, when Oxygen contaminates the reactor catalyst, Hydrogen is used to purge the catalyst, and subsequently used as fuel.

Paper

Scale up and Scale Down Issues of Renewable Ammonia Plants: Towards Modular Design

Renewable sources of energy such as biomass, solar, wind or geothermal just to mention some of the most widely extended are characterized by a highly distributed production across regions (EPA, 2017). Total renewable energy available is more than enough to provide for society needs, but the traditional production paradigm is changing. Economies of scale have featured current industry and its infrastructures based on large production complexes (i.e Dow, Exxonmobil or BASF hubs). The well-known six tenths rule has extensively been used in the chemical industry to scale up or down the cost of technologies. This rule is suitable for large…

Article

Small-scale ammonia production is the next big thing

Over the last few years, world-scale ammonia plants have been built, restarted, and relocated across the US. The last of these mega-projects began operations at Freeport in Texas last month. No more new ammonia plants are currently under construction in the US, and the received industry wisdom is that no more will begin construction. However, project developers and ammonia start-ups did not get this memo. With low natural gas prices persisting, they have not stopped announcing plans to build new plants. The difference is that the next tranche of new ammonia plants breaking ground will not be world-scale but regional-scale, with production capacities of perhaps only one tenth the industry standard. Despite using fossil feedstocks, these plants will set new efficiency and emissions standards for small-scale ammonia plants, and demonstrate novel business models that will profoundly alter the future industry landscape for sustainable ammonia technologies.

Paper

Dutch Initiatives to Store Sustainable Energy in the Form of Ammonia

Proton Ventures BV is a company dedicated to supply mini ammonia units for storing decentralised produced (sustainable) energy. Proton has developed a commercial unit for the production of small amounts of ammonia, which can store up to 25 MW of power or equivalent (bio-) gas energy. Hans Vrijenhoef, as the director of the company, will give an overview of existing plans in The Netherlands to store this decentralised energy and to make use of this in an economic way. The N-Fuel units will be skid-mounted, safe in operation, and almost fully automated in order to keep CAPEX and OPEX costs…

Paper

Developments in Electrochemical Ammonia Synthesis

Proton Energy Systems, d/b/a Proton OnSite, is a technology and commercialization leader in the field of membrane based electrolysis. The company was founded on the vision of utilizing electrolysis technology for the capture and storage of energy in high value applications. Recently, the concept of storing electrical energy in the form of a carbon neutral liquid fuel, particularly ammonia, has been gaining traction within the research investment community. Proton has been participating in collaborative research with the University of Minnesota to advance the system concept for distributed ammonia production using wind-derived hydrogen (via electrolysis) and subsequent conversion to ammonia using…

Paper

Small Scale Low-Pressure Ammonia Synthesis

Ammonia is one of the most important chemical commodities in the US and will be a key component in helping the world meet the rising demand for food and energy. Ammonia is needed in distributed locations for agriculture (as fertilizer for small grain and corn production), for indirect hydrogen storage1 (transported as a liquid at moderate pressure to hydrogen stations), or as a liquid fuel2 (for internal combustion engines or solid oxide fuel cells). Recently, there has been significant effort to develop scalable technologies for conversion of intermittent energies (e.g., solar, wind) into energy dense carbon-neutral liquid fuels, and ammonia…