Article

Toyota, 7-Eleven to Cooperate on Low-Carbon Convenience Stores

Last month, one Ammonia Energy post discussed Toyota’s participation in a Low-Carbon Hydrogen Project in its home prefecture -- including implicit support for ammonia as a hydrogen carrier.  Another post discussed Japanese manufacturer IHI’s plans to commercialize a small-scale combined heat and power system (micro CHP) based on direct ammonia solid oxide fuel cell technology.  Now, according to a June 6 Toyota Motor Corporation press release, Toyota and micro CHP have converged. The announcement served as the unveiling of a “joint project” by Toyota and the convenience store chain 7-Eleven to develop “next-generation convenience stores aiming to considerably reduce CO2 emissions.”  The two companies initially agreed to cooperate in August 2017 on "considerations toward energy conservation and carbon dioxide emission reduction in store distribution and operation.”

Article

Progress for Low-Temperature Direct Ammonia Fuel Cells

Speaking at the NH3 Energy+ Topical Conference last month, University of Delaware Adjunct Professor Shimshon Gottesfeld reported on progress made by the university’s direct ammonia fuel cell (DAFC) project. Evidently, the UDel team is now a big step closer to its goal of establishing the DAFC as a viable automotive power plant.

Paper

Development of Materials and Systems for Ammonia-Fueled Solid Oxide Fuel Cells

Hydrogen is the primary fuel source for fuel cells. However, the low volume density and difficulty in storage and transportation are major obstacles for the practical utilization. On-site generation of hydrogen from its carrier is an effective method for the fuel supply. Among various hydrogen carriers, ammonia is one of the promising candidates. Ammonia has high hydrogen density. The boiling point of ammonia is relatively high, leading to the ease in liquefaction and transportation. Hydrogen can be produced from ammonia with a mildly endothermic process. The reaction temperature of ammonia cracking is about 600˚C or higher which is close to…

Article

SIP “Energy Carriers” video: ammonia turbines, industrial furnaces, fuel cells

To demonstrate the progress of the SIP "Energy Carriers" program, the Japan Science and Technology Agency last week released a video, embedded below, that shows three of its ammonia fuel research and development projects in operation. R&D is often an abstract idea: this video shows what it looks like to generate power from ammonia. As it turns out, fuel cells aren't hugely photogenic. Nonetheless, if a picture is worth a thousand words, this will be a long article.

Article

Ammonia Fuel Cells: SOFC stack test and system analysis

New research, recently published in the International Journal of Hydrogen Energy, demonstrates that solid oxide fuel cell (SOFC) systems fueled with ammonia could be "more efficient than equivalent hydrogen-based" systems. This new paper comes out of the Fuel Cell Lab at the University of Perugia, in Italy, and builds upon years of research coming out of that laboratory on the use of ammonia and urea in fuel cells.

Paper

Research and Development of Ammonia-fueled SOFC Systems

Ammonia is a promising hydrogen carrier because of its high hydrogen density, low production cost, and ease in liquefaction and transport. Ammonia decomposes into nitrogen and hydrogen through a mildly endothermic process. The ammonia decomposition temperature is close to the operating conditions of solid oxide fuel cells (SOFCs). Therefore, the integration of these two devices is beneficial in terms of efficient heat and energy managements and will lead to the development of simplified generation systems. We have investigated three types of ammonia-fueled SOFC systems. In one system, ammonia is directly supplied to the anode chamber. Ammonia decomposes into nitrogen and…

Paper

Current progress in development of NH3-fueled solid-state fuel cell systems

Current progress in development of NH3-fueled solid-state fuel cell systems T. Okanishi*, K. Okura, J. Yang, H. Muroyama, T. Matsui, M. Kishimoto, M. Saito, H. Iwai, H. Yoshida, K. Eguchi, Kyoto University; H. Iwai, K. Inaoka, S. Suzuki, Y. Takahashi, Noritake; T. Horiuchi, H. Yamasaki, Nippon Shokubai; S. Matsumoto, H. Kubo, Toyota Industries; J. Kawahara, A. Okabe, Mitsui Chemical; Y. Kikkawa, T. Negishi, S. Watanabe, Tokuyama