Site items in: Stationary Power

Power-to-Ammonia-to-Power (P2A2P) for Local Electricity Storage in 2025
Presentation

A carbon-free, circular economy is required to decrease greenhouse gas emissions. A commonly named alternative to the carbon-based economy is the hydrogen economy. However, storing and transporting hydrogen is difficult. Therefore, the ammonia economy is proposed. Ammonia (NH3) is a carbon-free hydrogen carrier, which can mediate the hydrogen economy. Especially for long-term storage (above 1 day), ammonia is more economically stored than hydrogen. Transportation costs are greatly reduced by adopting a decentralized energy economy. Furthermore, political-economic factors influence energy prices less in a decentralized energy economy. With small-scale ammonia production gaining momentum, business models for the decentralized ammonia economy are…

On the Ground in Japan: Residential Fuel Cells
Article

Last week Kaden Watch, a Japanese Web site for appliance news, reported that Tokyo Gas had delivered its 80,000th Ene Farm residential fuel cell system. This small news item, delivered by a niche media outlet, lifts a critical corner of the decidedly “big-tent” story of Japan’s strategy to develop a hydrogen-based energy economy. How the Ene Farm topic develops is likely to be a major factor in Japan’s ability to sustain its hydrogen vision -- and possibly a determinant of the role ammonia could play within it.

Ammonia – and Other Nitrogen-Based Fuels
Article

Next month the print edition of Fuel Processing Technology will feature a paper entitled “Auto-ignition of a carbon-free aqueous ammonia/ammonium nitrate monofuel: a thermal and barometric analysis.” This title is provocative. First, what is this idea of a fuel composed of a mixture of ammonia and ammonium nitrate (AN)? If ammonia is a good fuel, is it made better with the addition of ammonium nitrate? Second, why is it aqueous? Is the presence of water a feature or a bug? Third, what is a monofuel and why is this term used when the fuel is a mixture of two molecular species? And finally, why is the paper ultimately about auto-ignition?

Progress in Ammonia Combustion Catalysts
Article

On February 14 the Journal of Physical Chemistry published a paper entitled “Local Structures and Catalytic Ammonia Combustion Properties of Copper Oxides and Silver Supported on Aluminum Oxides.” The paper, by Satoshi Hinokuma of Kumamoto University in Kumamoto, Japan and four co-authors, reports on a catalyst system that is well adapted for use in ammonia energy applications.

Ammonia for energy storage: economic and technical analysis
Article

Developers around the world are looking at using ammonia as a form of energy storage, essentially turning an ammonia storage tank into a very large chemical battery. In the UK, Siemens is building an "all electric ammonia synthesis and energy storage system." In the Netherlands, Nuon is studying the feasibility of using Power-to-Ammonia "to convert high amounts of excess renewable power into ammonia, store it and burn it when renewable power supply is insufficient." While results from Siemens could be available in 2018, it might be 2021 before we see results from Nuon, whose "demonstration facility is planned to be completed in five years." But, while we wait for these real-world industrial data, the academic literature has just been updated with a significant new study on the design and performance of a grid-scale ammonia energy storage system.

Sturman Industries' Dual-Fuel Ammonia Engine
Article

Eddie Sturman, noted inventor and co-founder of Sturman Industries, has been developing ammonia internal-combustion-engine (ICE) technology for several years – "at least six, maybe more." At the 2016 NH3 Fuel Conference, he provided the most in-depth look so far at the results of Sturman Industries' R&D program. Specifically, his talk featured a dual-fuel compression ignition engine powered by a combination of diesel fuel and ammonia.

Piloting a Combined Heat and Power / Distributed Generation System, Powered by Carbon-Free, Renewable-Based Anhydrous Ammonia
Presentation

UCLA-STPP is an interdisciplinary science / policy research unit, enjoining faculty in schools of engineering, public health, law, business, and medicine. The two-part mission of UCLA-STPP is to: (1) evaluate the viability of safer, cleaner, greener, more sustainable substitutes for existing hazardous services, processes, systems, and/or technologies, and (2) employ diffusion analysis to identify institutional, policy, and regulatory barriers to the adoption of viable safer substitutes and prescribe policy changes to overcome key barriers. UCLA-STPP has taken leadership in developing and institutionalizing “alternatives analysis” as policy/regulatory tool as a method to evaluate and identify safer, cleaner, greener, more sustainable substitutes.…