Article

Techno-Economic Challenges of Green Ammonia as an Energy Vector

Techno-Economic Challenges of Green Ammonia as an Energy Vector, a new textbook, was issued in September by scientific and technical publisher Elsevier. The 340-page volume was written by Agustin Valera-Medina of Cardiff University and Rene Banares-Alcantara of Oxford University. The book is a valuable consolidation of knowledge across the many aspects of ammonia energy, and seems destined to become a go-to reference for current and future technologists, project developers, and policy makers.

Paper

An Integrated Evaluation Method with Application to a New Ammonia Synthesis Process Design

While keeping the traditional centralized large-scale chemical production, the increasing market volatility and the rising use of renewable resources will require new production ways such as distributed, modularized, and small-scale production. The new emerging processes are expected to provide more flexibility, shorter time to market, and better use of distributed renewable raw materials (e.g. biomass) and energy (e.g. solar and wind). However, the traditional process evaluation methods such as TEA (Techno-Economic Analysis) tend to lower the value of the new processes since the small-scale would make higher capital cost and lower operation efficiency. Therefore, a new evaluation method is required…

Paper

Comparative Technoeconomic Analysis of Conventional and Absorbent-Enhanced Ammonia Synthesis

Ammonia is the second-most produced synthetic chemical and the main precursor for nitrogen-based fertilizer. In 2015, 160 million tons were produced globally, and global demand is expected to grow 1.5% annually until 2050 [1]. However, traditional ammonia production uses natural gas or coal as its hydrogen source, and as a result, is also responsible for more than 1% of global GHG emissions and 5% of global natural gas consumption [2]. Clearly, a more sustainable ammonia production scheme is needed. One such alternative is obtain hydrogen from electrolysis powered by wind- or solar-derived electricity. It has been proposed to perform this…

Paper

A Techno-Economic Model for Renewable Ammonia By Electrochemical Synthesis with Proton Conductive Membrane

Ammonia as a renewable liquid fuel has increased global interest for long term energy storage and as a principal chemical candidate in overcoming the challenging practical issues such as storage and transport associated with hydrogen. It is known the Haber-Bosch method of producing ammonia is based on fossil fuels and has a high energy consumption as a result of operating temperatures and pressures of special concern. A techno-economic study is presented for the electrochemical synthesis of ammonia with proton conducting membrane at near ambient pressure. Different coupling pathways were investigated for production of hydrogen and generation of nitrogen to assess…

Article

Ammonia for energy storage: economic and technical analysis

Developers around the world are looking at using ammonia as a form of energy storage, essentially turning an ammonia storage tank into a very large chemical battery. In the UK, Siemens is building an "all electric ammonia synthesis and energy storage system." In the Netherlands, Nuon is studying the feasibility of using Power-to-Ammonia "to convert high amounts of excess renewable power into ammonia, store it and burn it when renewable power supply is insufficient." While results from Siemens could be available in 2018, it might be 2021 before we see results from Nuon, whose "demonstration facility is planned to be completed in five years." But, while we wait for these real-world industrial data, the academic literature has just been updated with a significant new study on the design and performance of a grid-scale ammonia energy storage system.