Sustainable ammonia production from sun, air and water

Dorottya Gubán, Josua Vieten, Martin Roeb, Christian Sattler

German Aerospace Center (DLR)
Institute of Solar Research
Ammonia and fertilizer production

Hydrogen from natural gas

Nitrogen from air separation unit

Haber-Bosch process
> 200 bar
> 400 °C
Fe/Al₂O₃

Ammonia (NH₃)

Intermediates
for instance: nitric acid HNO₃ + additives

Nitrogen Fertilizer

Images: CC BY 3.0 Wikimedia (Drahkrub, Rasbak)
Thermochemical hydrogen production

Techno-economic Study: LCOH: 6.7 – 13.0 €/kg [1]

Thermochemical air separation – Project Düsol
Thermochemical cycles for air separation

N₂ purification cycle

Air

\[T_{\text{red}} \]

\[T_{\text{ox}} \]

\[\text{ABO}_3 \]

Reduction

Oxidation

Oxygen

Nitrogen < 3ppm O₂

Choice of redox material

Perovskites - SrFeOₓ
- Low temperature → low \(p_{O_2} \)
- Rapid kinetics
- Cycleability
- Abundant materials
- Low gravimetric O₂ capacity

 выбранный вариант: ✗
Perovskite Materials Design

Theoretical study of > 240 perovskites

Spectrum of redox enthalpies

- Higher reduction temperatures
- More energy required
- More effective air separation
- Lower oxygen partial pressures achievable

Example: SrFeO$_{3-\delta}$-based perovskites

Exchange some Fe by Mn \Rightarrow Higher redox enthalpy

Exchange some Fe by Co \Rightarrow Lower redox enthalpy

Laboratory scale air separation test

Experimental details

- 50 g SrFeO$_x$
 - Heating/cooling in Argon
- Air separation: synthetic air
- Several consecutive cycles

50g material produced:
- 0.6 l purified N$_2$ from air
- 2 l purified N$_2$ from semi-purified stream (purity suitable for the Haber-Bosch process)
Scaling up to 20 kW solar – reactor design

Reduction:
\[
\text{ABO}_{3-\delta_{\text{ox}}} \xrightarrow{\text{heat in } \Delta \delta \Delta H_0} \text{ABO}_{3-\delta_{\text{rd}}} + \frac{\Delta \delta}{2} \text{O}_2, \quad T_{\text{rd}}
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>(T_{\text{rd}})</th>
<th>Atmosphere</th>
<th>(T_{\text{max}})</th>
<th>(p_{\text{O}_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrFeO(_3)</td>
<td>800 – 1000 °C</td>
<td>Air</td>
<td>1150 °C</td>
<td>0.2 bar</td>
</tr>
</tbody>
</table>

Oxidation:
\[
\text{ABO}_{3-\delta_{\text{rd}}} + \text{Air(20\% O}_2) \xrightarrow{\text{heat out } -\Delta \delta \Delta H_0} \text{ABO}_{3-\delta_{\text{ox}}} + \text{N}_2(p_{\text{O}_2} \ll 0.2\text{bar}), \quad T_{\text{ox}}
\]

<table>
<thead>
<tr>
<th>Material</th>
<th>(T_{\text{ox}})</th>
<th>Atmosphere</th>
<th>(T_{\text{min}})</th>
<th>(p_{\text{O}_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SrFeO(_3)</td>
<td>300 – 500 °C</td>
<td>Air</td>
<td>250 °C</td>
<td>0.2 - ppm</td>
</tr>
</tbody>
</table>
Solar rotary kiln

- Suitable for up to 2 kg redox material
- Stainless steel crucible (1.4828)
 - welded window flange and inlet-outlet pipes
 - 1.4828 because of its low amount of chrome
 - Temperature resistant up to 1000 °C
- Zirconia coating
 - Increase heat and reaction resistance
- Gastight design with a quartz window
- Feedthrough flange for inlet and outlet pipe in the back of the crucible
- Bayonet thermocouples – 5 measurement points
- Mass flow controllers at the inlet and outlet pipe
- Oxygen sensor and filter
Experiments in the solar simulator

- Demonstration of thermal resistance
- Validation of design
Solar air separation

Experimental details

- Test in the solar furnace DLR Köln-Porz
- 250 g redox particle (SrFeO\(_x\))
- Particle size 3-4.5 mm
- Rotation speed 1-6 rpm
- 1-4 l/min synthetic air flow
Solar air separation - results

Temperature distribution

With 250 g redox material:
Reduction: 4 l released oxygen
Oxidation: 3.6 l captured oxygen
Solar air separation – multiple cycles

Temperature distribution

Solar reduction
Energy demand of thermochemical air separation

Model (based on equilibrium thermodynamics):

\[Q_{AS} = (Q_{chem} + Q_{sensible}) \cdot (1 - \eta_{solid-solid}) + Q_{pump} \]

\[Q_{chem} = \int_{\delta_{ox}}^{\delta_{red}} \Delta H(\delta, T) \, d\delta \]

\[Q_{sensible} = \int_{T_{ox}}^{T_{red}} C_p(T, \delta_{ox}, \delta_{red}) \, dT \]

\[Q_{pump}: \quad \text{mechanical pump envelope function, Brendelberger et al.} \]

\[\eta_{solid-solid} = 0.6 \]

Data:

https://portal.mpcontribs.org/redox_thermo_csp/

State of the art: cryogenic air separation!
How can thermochemical air separation be more efficient?

- Improve heat recuperation?
 - Solid-solid heat recovery rates of > 97 % would be required for competitiveness!
 (virtually impossible, realistic maximum values are < 80 %, see Felinks et al.)

- Combine with other technology?
 - Pressure swing adsorption (PSA) is a very efficient technology for air separation,
 as long as the required gas purity is not very high

- Combine PSA and thermochemical air separation!

Only a small fraction of the O_2 needs to be transported thermochemically

Felinks, J.; Brendelberger, S.; Roeb, M.; Sattler, C.; Pitz-Paal, R.
Applied Thermal Engineering **2014**, *73* (1), 1006-1013

Vieten, J; Gubán, D.; Lachmann, B.; Bulfin, B.; Kaunzner, D., patent application pending (file no DE 10 2019 126 114.7)
Energy balance of combined PSA and thermochemistry vs. state of the art

Per mol of nitrogen

PSA: \[w_{\text{sep}} = \ln \left(\frac{p_{O_2,\text{in}}}{p_{O_2,\text{out}}} \right)^2 \cdot 1000 \text{ Jmol}^{-1} \]

Combined PSA + thermochemistry:

\[q_{\text{sep}} = \ln \left(\frac{p_{O_2,\text{in}}}{p_{O_2,\text{trans}}} \right)^2 \cdot \eta_{\text{elec}}^{-1} \cdot 1000 \text{ Jmol}^{-1} \]

\[+ q_{\text{thermochem}} \cdot p_{O_2,\text{trans}} \cdot \eta_{\text{solid\textendash}solid} \cdot \text{mol bar}^{-1} \]

with heat → electricity conversion efficiency \(\eta_{\text{elec}} = 0.3 \)
\(p_{O_2,\text{in}} = 0.21 \text{ bar} \)
\(q_{\text{thermochem}} \) for \(\text{Sr}_{0.875}\text{Ba}_{0.125}\text{Fe}_{0.875}\text{Co}_{0.125}\text{O}_{3-\delta} \),
reduction at 600 °C, \(p_{O_2} = 10^{-3} \text{ bar} \)
oxidation at 400 °C, \(p_{O_2} = 10^{-6} \text{ bar} \)

Cryogenic AS: \[w_{\text{cryo}} = 12 \text{ kJmol}^{-1} \]

Combined system is more efficient than cryogenic AS

Follow-up project - outlook

Investigation of the entire value chain from hydrogen, nitrogen and oxygen to the fertilizer product.
Thank you for your attention!