Microwave Catalytic Synthesis of Ammonia for Energy Storage and Transformation

<u>Xinwei Bai¹</u>, Yuxin Wang¹, Dushyant Shekhawat², Christina Wildfire², Albert E. Stiegman³, Robert A. Dagle⁴ and Jianli Hu¹

¹ Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV

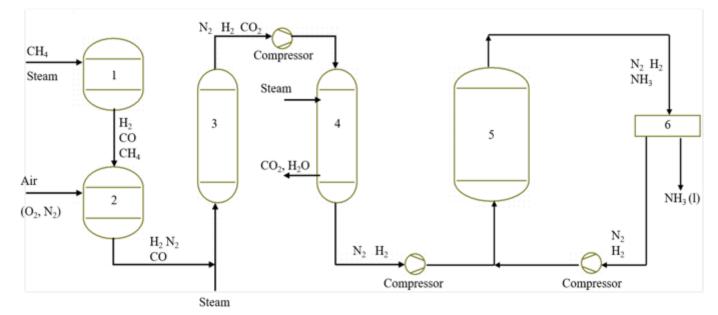
² US Department of Energy, National Energy Technology Laboratory, Morgantown, WV

³ Department of Chemistry, Florida State University, Tallahassee, FL

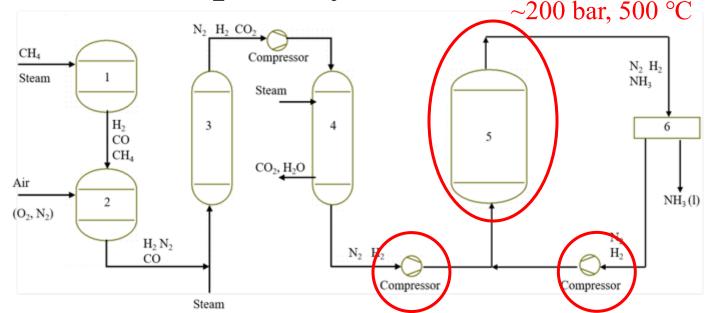
⁴ Pacific Northwest National Laboratory, Richland, WA

Background:

- Hydrogen Energy
 - Clean combustion;
 - Bountiful in supply;
 - Low volumetric energy density difficult to transport.
- Significance of Ammonia
 - Important raw material of fertilizers and pharmaceutical products;
 - Energy-dense hydrogen carrier.

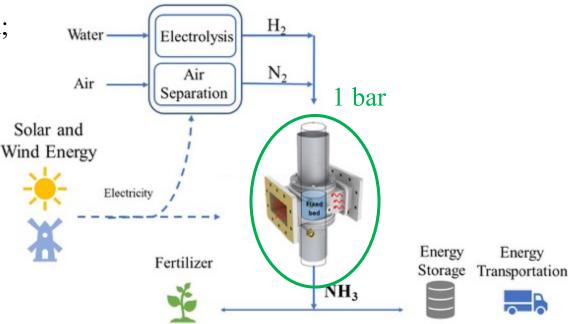


Source: 1: APNews: https://www.apnews.com/bd4f217666964b6984b77501a34d62a1 2: Economic Times: https://economictimes.indiatimes.com/news/science/hydrogen-cars-formasses-one-step-closer-to-reality/articleshow/61736337.cms


Commercial Ammonia Plant: Haber-Bosch Process (~1000 ton per day)

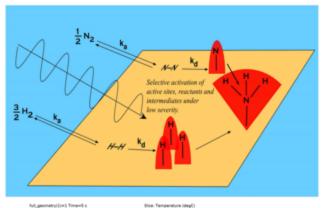
Unit operations: 1: methane steam reforming reactor; 2: methane oxidative reforming reactor; 3: Catalytic water-gas shift reactor; 4: pressure swing adsorption of CO_2 ; 5: Haber-Bosch ammonia synthesis reactor (high temperature, high pressure); 6: condenser.

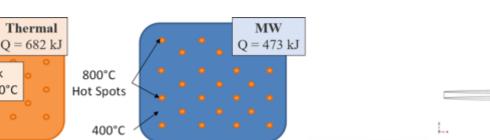
Commercial Ammonia Plant: Haber-Bosch Process (~1000 ton per day)

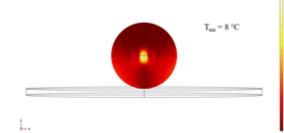


Unit operations: 1: methane steam reforming reactor; 2: methane oxidative reforming reactor; 3: Catalytic water-gas shift reactor; 4: pressure swing adsorption of CO₂; 5: Haber-Bosch ammonia synthesis reactor (high temperature, high pressure); 6: condenser.

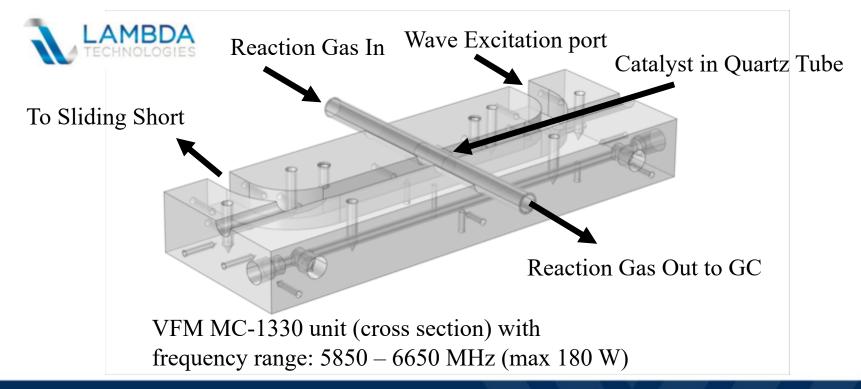
Designed Ammonia Synthesis under Atmospheric Pressure


- Renewable energy is stranded;
 - Duck effect;
 - Intermittent in nature;
- Energy transformation for storage and transportation;
 - Stored as chemical energy;
 - Ammonia;

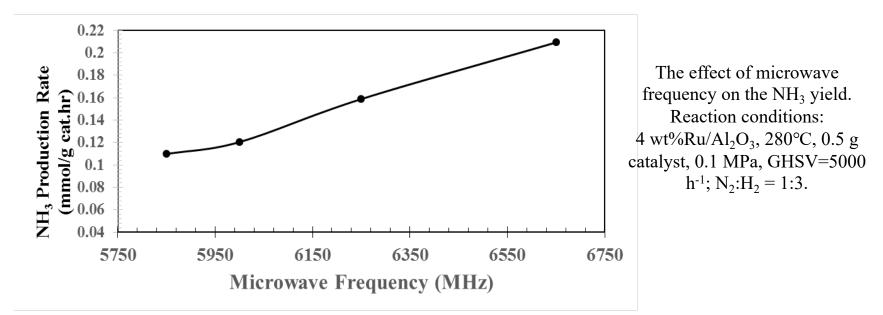



New Technology: Microwave (MW) Reactor

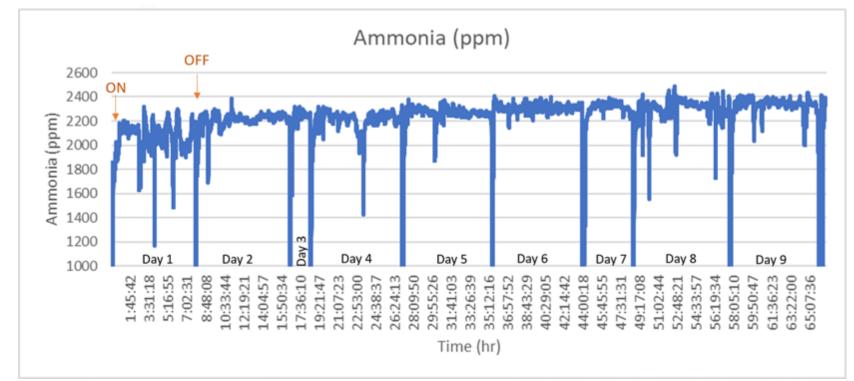
- Internal Heating; •
- Rapid Heating; •
- Selective Heating of Composite Material; •
- Controllable Field Distribution (single-mode • MW reactors);
- Other Non-thermal Effects. ٠


Siles: Temperature (depC)

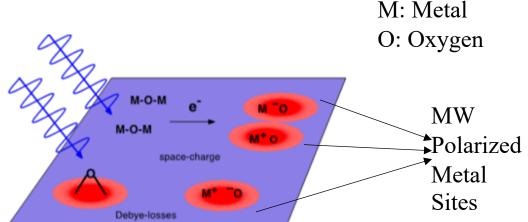
Bulk


[= 800°C

New Technology: Microwave (MW) Reactor



Results: Ammonia Productivity of Ru/Al₂O₃ under MW irradiation



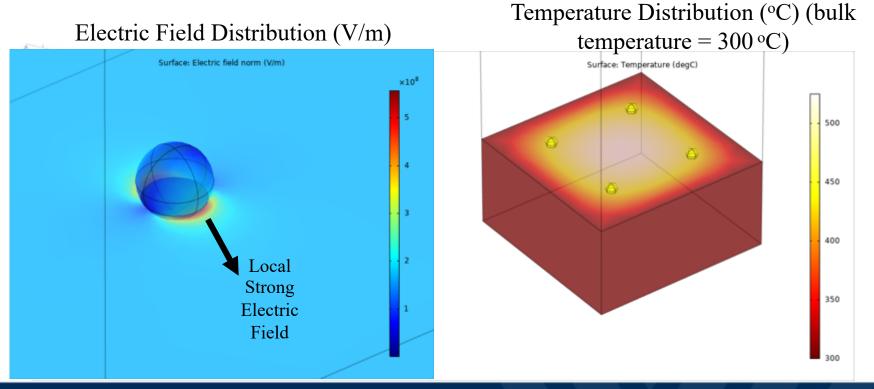
Results: Catalyst Stability

The Role of Microwave: thermal and non-thermal effects

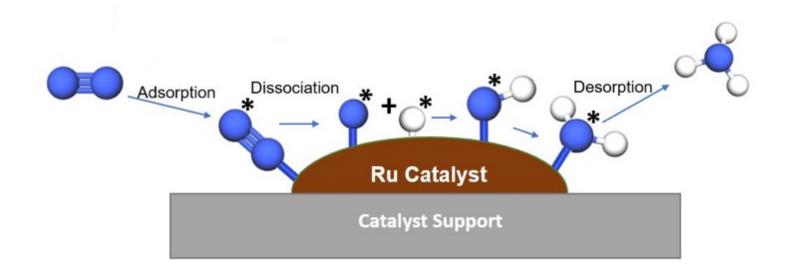
- MW Heating (thermal)
 - kinetic energy loss due to inelastic dipole rotation and/or oscillation;
 - Changing H-field induces eddy current within conductive metal particles [1];
- Polarization (non-thermal)
 - Electric dipole formation due to displacement of electron cloud of atoms [2].
 - Field distribution

[1] A.P. Anzulevich, V.D. Buchelnikov, I. V Bychkov, D. V Louzguine-Luzgin, Microwave Penetrating and Heating of Metallic Powders, Piers 2009 Moscow Vols I Ii, Proc. 2 (2009) 844–847. [2] National Research Council, Microwave Processing of Materials, the National Academy Press, Washington, D. C., 1994. doi:10.17226/2266.

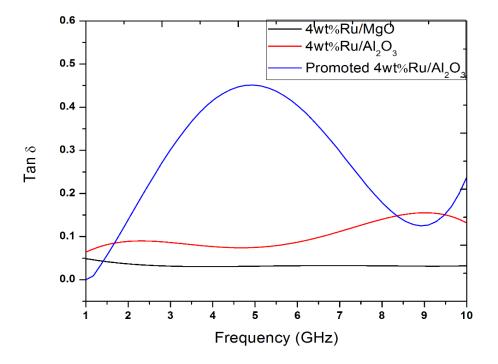
The Role of Microwave: Finite-Element Method


Assumptions:

- Large, continuous metal-support system;
- Metal particles are equally spaced;
- Diameter of metal particle (cluster) is 20 nm;
- Microwave in –z direction;


The Role of Microwave: Finite-Element Method

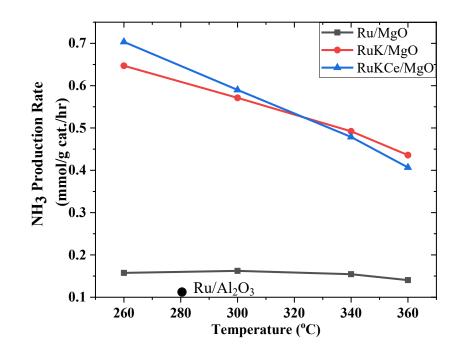
Software: COMSOL Multiphysics (version 5.4). Modules: RF, Heat Transfer



How Microwave Assists Ammonia Synthesis:

Results: Electromagnetic Properties Measurement

$$\tan \delta = \frac{\varepsilon''}{\varepsilon'}$$


• The lossiness of the material.

$$\varepsilon(\omega) = \varepsilon'(\omega) + i\varepsilon''(\omega)$$

- Real part: how much microwave energy can be absorbed by dipoles.
- Imaginary part: the inelastic component that how much energy is loss and transformed to heat.

Results: Support and Promoter Effects

The effect of temperature and promoters on the NH₃ yield. Reaction conditions: 0.1 MPa, Frequency = 5850 MHz, GHSV=5000 h⁻¹.

- 0.4 g MgO catalyst and 0.1 g SiC, physical mixture.
- Using MgO support increases ammonia production rate;
- Adding K and Ce promoters boosts the ammonia production

Conclusion Remarks:

- Microwave irradiation allows ammonia synthesis process be carried out under atmospheric pressure and low temperature;
- The performance of Ru-based catalyst was stable under both continuous operation and simulated power interruption performed under repeatedly start-up and shutdown mode.
- Microwave assists ammonia synthesis in both thermal and nonthermal manners:
 - Thermal: microwave can heat the catalyst material (composite material) selectively, forming "hot spots";
 - Nonthermal: microwave induces local strong E-field which potentially assists N₂ dissociation on the metal particle sites;
- Adding promotors K and Ce to Ru/MgO enhances ammonia production rate.

Acknowledgement:

- Hu's Research Group @ WVU
 - Advisor: Dr. Jianli Hu;
 - Post-docs:
 - Dr. Yuxin Wang
 - Dr. Yan Luo (previous)
 - And all other group members

National Energy Technology Laboratory

- Dr. Victor Abdelsayed
- Dr. Dushyant Shekhawat
- Dr. Christina Wildfire

Pacific Northwest National Laboratory

• Robert A. Dagle

Florida State University

- Dr. Albert Stiegman
- A special thank to Dr. Terence Musho for assistance on FEM model build-up.

Microwave Assisted Catalytic Conversion of Ethane to Aromatics for a More Efficient Approach over a Conventional Fixed Bed Reactor

Presenter: Brandon Robinson (Oral) Time: 1:24 – 1:42 pm, Nov. 12th (Tuesday) Section: 308 - Advances in Methane Coupling Reaction and Aromatization Location: Hyatt Regency Orlando, Challenger 41/42.

Microwave Catalytic Reactor for Converting Light Alkane to Aromatics

Presenter: Xinwei Bai (Poster) Time: 3:30 – 5:00 pm, Nov. 13th (Wednesday) Section: 560 - Poster Session: Catalysis and Reaction Engineering Division Location: Hyatt Regency Orlando, Regency Ballroom R/S, #560DY