Electrochemical ammonia synthesis using proton-conducting ceramics

Neil P. Sullivan, Liangzhu Zhu, Chuancheng Duan, Ryan O’Hayre, Max Pisciotta, Long Le, Carolina Herradon Hernandez, Michelle Butler, Canan Karakaya, Robert J. Kee
Colorado School of Mines, Golden, Colorado, USA

Fred Jahnke, Hossein Ghezel-Ayagh
FuelCell Energy, Danbury, Connecticut, USA

Presented to:
Ammonia Energy Conference 2019
American Institute of Chemical Engineers Annual Meeting
Orlando, Florida, USA

Tuesday November 11, 2019
U.S. DoE, NASA, FuelCell Energy, and Colorado School of Mines have invested in proton-conducting ceramics

- **ARPA-E REBELS**: Proton-conducting ceramic fuel cells (5 years)
- **ARPA-E REFUEL**: NH$_3$ synthesis with protonic ceramics (3.5 yrs)
- **EERE HTWS**: Proton-conducting ceramic electrolyzers (2 yrs)
- **FE NETL**: CO$_2$-to-fuels through electrochemical catalysis (2 yrs)
- **NASA NSTRF**: Making fuel on Mars with protonic ceramics (2 yrs)
Proton-conducting ceramics are an emerging material with broad energy applications.

Protonic-ceramic electrochemical cell for “green” ammonia synthesis.
The CSM FuelCell Energy team explores electrochemical NH₃ synthesis from many perspectives

- Experimental efforts on electrochemical ammonia synthesis
 - Neal P. Sullivan, Liangzhu Zhu, Chuancheng Duan, Ryan O’Hayre, Max Pisciotta, Long Le, Carolina Herradon Hernandez, Michelle Butler, Colorado School of Mines

- Catalyst characterization
 - Chris Cadigan, Canan Karakaya, Robert J. Kee, Colorado School of Mines

- Techno-economic analysis of electrochemical ammonia synthesis
 - Fred Jahnke and Hossein Ghezel-Ayagh, FuelCell Energy
The proton-conducting ceramic electrochemical cell is the heart of our ammonia-synthesis approach

- Perovskite ceramic membrane
 - $\text{BaCe}_{0.4}\text{Zr}_{0.4}\text{Y}_{0.1}\text{Yb}_{0.1}\text{O}_{3-d}$ (BCZYYb)
- Composite metal – ceramic fuel electrode
 - Porous Ni - BCZYYb
 - Forms mechanical support for MEA
- Porous steam electrode
 - $\text{BaCo}_{0.4}\text{Fe}_{0.4}\text{Zr}_{0.2}\text{O}_{3-\delta}$ (BCFZY)
 - Triple-conducting electrode (H$^+$, O$^{2-}$, e$^-$)
 - Splits H$_2$O into H$^+$ and O$_2$
- Operating conditions
 - ~ 600 °C at atmospheric pressure
 - Need to increase pressure and lower temperature for NH$_3$ synthesis
FuelCell Energy has successfully scaled up proton-conducting ceramics, targeting 1-kW$_e$ stack.

World's largest proton-conducting ceramic cells

Target stack
A patent-pending catalyst developed by StarFire Energy reacts N₂, H₂ and H⁺ to form NH₃

- “Ru-B2CA” catalyst
 - Ruthenium catalyst
 - Ba₂CaAl₂O₆ support

![Graph showing NH₃ production rate vs. temperature at different pressures.](image)

NH₃ Production Rate (mmol NH₃ g⁻¹ hr⁻¹)

- 20 bar
- 15 bar
- 10 bar
- 5 bar

Temperature (°C)

150 350 550 750
Colorado School of Mines has invested in a pressurized electrochemical test stand

Effect of pressure on electrochemical NH$_3$-synthesis rate

- NH$_3$ synthesis rate (moles/cm2 s x 108)
- Operating pressure (bar$_g$)

Cell packaging

- Assembly fixtures
- Fuel gases
- Male manifold
- Seal (2x)
- NH$_3$ cell
- Female manifold
- Current collection
- Electrolysis gases
- Assembly fixture

Pressure vessel

- Access ports
- Cylinder head
- Cylinder collar
- Thermal wells (1.4 kW)
- Hot-zone MgO housing
- NH$_3$ cell assembly
- Linear-actuator compression
- Load cell
- Cooling jacket outlet

NH$_3$ synthesis rate

- Operating pressure

Data points:

- 0 bar$_g$: 0 moles/cm2 s x 108
- 1 bar$_g$: 1 moles/cm2 s x 108
- 2 bar$_g$: 2 moles/cm2 s x 108
- 3 bar$_g$: 3 moles/cm2 s x 108
- 4 bar$_g$: 4 moles/cm2 s x 108
- 5 bar$_g$: 5 moles/cm2 s x 108
- 6 bar$_g$: 6 moles/cm2 s x 108
We have had the most success when decoupling the hydrogen production from the ammonia catalysis.

Coupled approach
Electrolysis and catalysis at 600 °C
A bit hot for NH$_3$ synthesis

Decoupled approach
Electrolysis at 600 °C
NH$_3$ catalysis at ~ 450 °C
The protonic-ceramic / B2CA combination shows encouraging longer-term, “reversible” operation.

Reversible cell:

NH₃-synthesis = energy storage;

NH₃ fuel cell = electricity generation

NH₃-fueled protonic-ceramic fuel cell for electricity generation
Techno-economic analysis at FuelCell Energy finds pressures need to reach 60 bar to be cost-competitive.

Diagram:
- **N_2** feed
- **H_2O** recycle
- **NH_3** condensation
- **Pure NH_3 product**
- **Recycle:** NH_3 / H_2 / N_2
- **Haber Bosch NH_3-synthesis reactor**
- **Protonic-ceramic H_2O electrolysis cell for H_2 generation**
- **Inerts**

Equations:
- N_2 + H_2O → NH_3 + H_2 / N_2
- Recycle: NH_3 / H_2 / N_2
- Protonic-ceramic H_2O electrolysis cell for H_2 generation
Cost drivers are electric power to drive water splitting, and pure nitrogen feedstock.

Sensitivity analysis at 60 bar operation:

- Current Density: ±50%
- Reactor Temp: ±4%
- Electricity: ±20%
- Maintenance: ±50%
- Capital Cost: ±20%
- N₂ Cost: -50% / +30%
- ROI: ±50%

Power:
- 64%
 - 5¢ / kWh

N₂:
- 19%
 - 16¢ / kg N₂

Capital:
- 14%

Maintenance:
- 3%

Projected production costs = $557 / ton NH₃
We have built a kW-capacity pressurized test stand to explore stack performance at elevated pressure.
The CSM-FCE team is making encouraging progress towards cost-competitive green ammonia production

• Proton-conducting ceramics
 – Efficient H\textsubscript{2} production
 – Scalable devices

• Ru – B2CA catalyst
 – Good performance at modest pressures

• Techno-economic analysis
 – Encouraging cost projections

• Going forward
 – Drive H\textsubscript{2}O-electrolysis temperature down to NH\textsubscript{3}-catalysis condition
Acknowledgements

U.S. Department of Energy
• Advanced Research Projects Agency - Energy
• Office of Energy Efficiency and Renewable Energy
• Fuel Cell Technologies Office
• Office of Fossil Energy, National Energy Technology Lab

U.S. National Aeronautics and Space Administration (NASA)

This work is supported under U.S. Department of Energy Award Number DE-AR0000808; ARPA-E REFUEL Program; Program Manager Grigorii Soloviechik.

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department Of Energy, under Award Number DE-AR0000493. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.