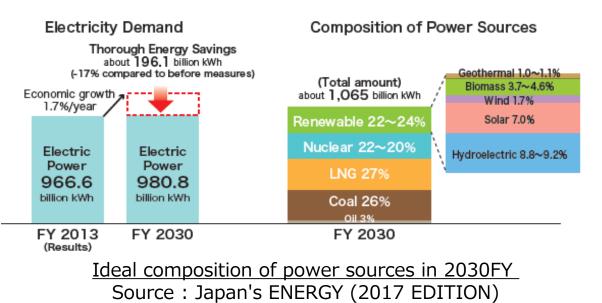
2019 AIChE Annual Meeting in Orlando Nov. 10-15, 2019 Session: Ammonia Combustion Date: 12th Nov. 2019 Session time: 1:45 PM - 3:40 PM Location: Hyatt Regency Orlando, Regency Ballroom P

New Technology of the Ammonia Co-Firing with Pulverized Coal to Reduce the NOx Emission

Takamasa Ito Hiroki Ishii Juwei Zhang Sakiko Ishihara Toshiyuki Suda

> **SSIP** 戦略的ハベーション創造プログラム Cross-ministerial Strategic Innovation Promotion Program



IHI Corporation

Role of hydrogen energy on GHG reduction in Japan

➢ GHG reduction targets of Japan mid-term : 26% by 2030FY (compared to 2013FY) long term : 80% by 2050FY

On July 3, 2018, the Cabinet approved the new 5th Strategic Energy Plan. Promotion of hydrogen energy is one of the measures to achieve mid-term target.

Towards 2030

- ~ To reduce emission of greenhouse gases by 26% ~
 - ~ To achieve energy mix target ~
 - Currently halfway to the target
 - Deliberate promotion
 - Realistic initiatives
 - Intensify and enhance measures

<Primary measures>

- O Renewable energy
- Lay foundations to use as major power source
- Cost reduction, overcome system constraints, secure flexibility of thermal power

O Nuclear power

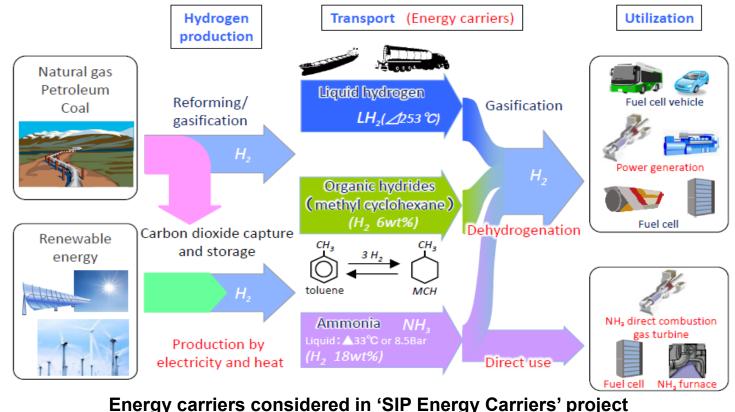
- Lower dependency on nuclear power generation to the extent possible
- Restart of nuclear power plants and continuous improvement of safety

O Fossil fuels

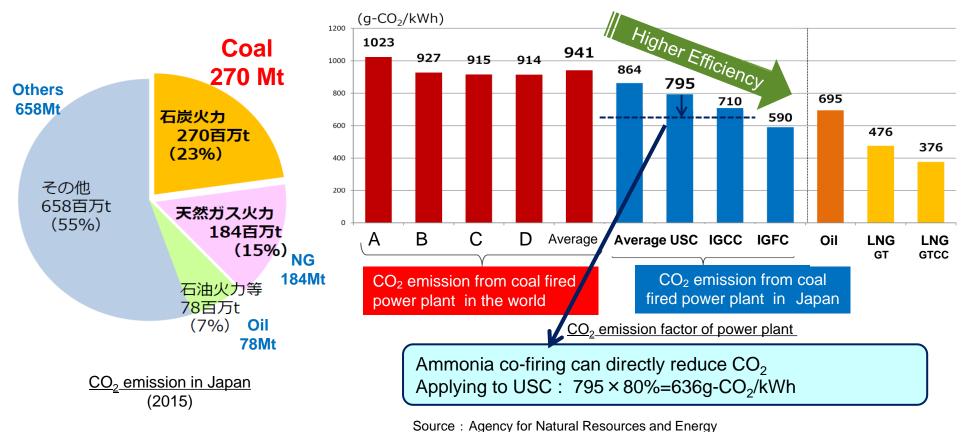
- Promote independent development of fossil fuels upstream, etc.
- Effective use of high-efficiency thermal power generation
- Enhance response to disaster risks, etc.

O Energy efficiency

- Continued thorough energy efficiency
- Integrated implementation of regulation of Act on Rationalizing Energy Use and support measures
- Promotion of hydrogen/power storage/distributed energy


<u>Measures to reduce 26% GHG by 2030FY</u> Source : The 5th Strategic Energy Plan

Advantages of ammonia as an energy carrier


Advantages of ammonia as an energy carrier

- (1) Highest hydrogen content per unit volume
- (2) Easy to liquify (-33°C at 1bar, similar to LPG)
- (3) Infrastructures for production and transportation are already existing
- (4) Can be used directly as a fuel for power plant

Applying ammonia co-firing to coal fired power plant

- CO₂ emission from coal fired power plant = 23% of total emission in Japan.
 Green ammonia co-firing can directly reduce CO₂ emission.
- Applying 20%(LHV) ammonia co-firing to USC boiler USC : 795g-CO₂/kWh \Rightarrow USC with ammonia 20% co-firing : 636g-CO₂/kWh

https://www.enecho.meti.go.jp/about/special/johoteikyo/sekainosekitankaryoku.html

THI

Problems to overcome

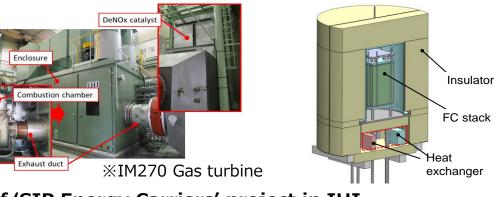
Problems to overcome


- (1) Optimized combustor design for stable flame and reduction of fuel-NOx to use ammonia in thermal power plant.
- (2) Evaluation of performance of power plant
- (3) Safety measures
- (4) Feasibility studies

IHI has joined Cross-ministerial Strategic Innovation Promotion Program (SIP) for the development of Ammonia Direct Combustion technology for gas turbine and coal fired boiler and also Ammonia Fuel Cell.

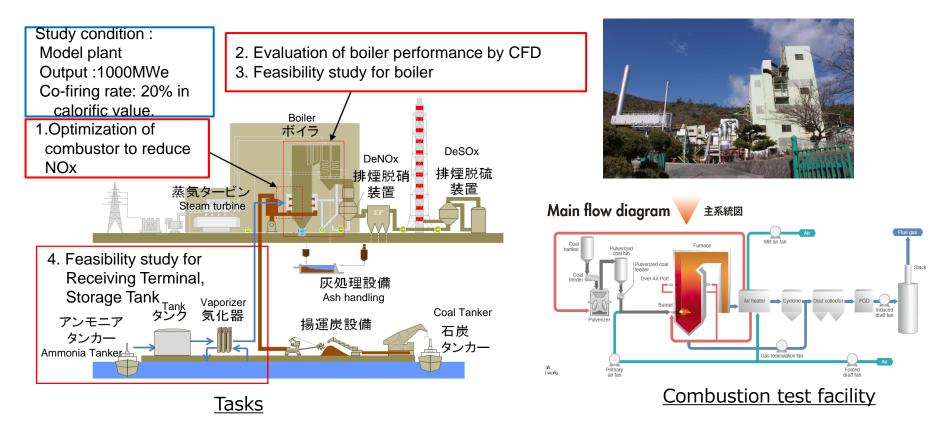
Air inlet duct

IH


Coal fired boiler

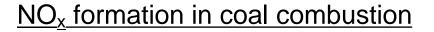
※CFT(Coal Firing Test Furnace)

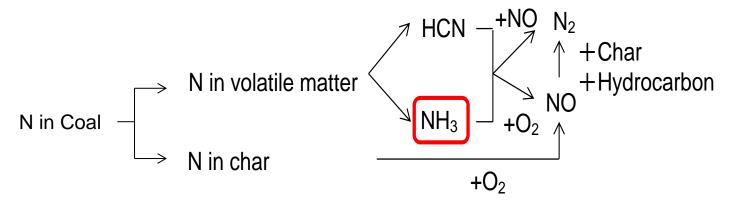
Gas turbine



Target power plant of 'SIP Energy Carriers' project in IHI

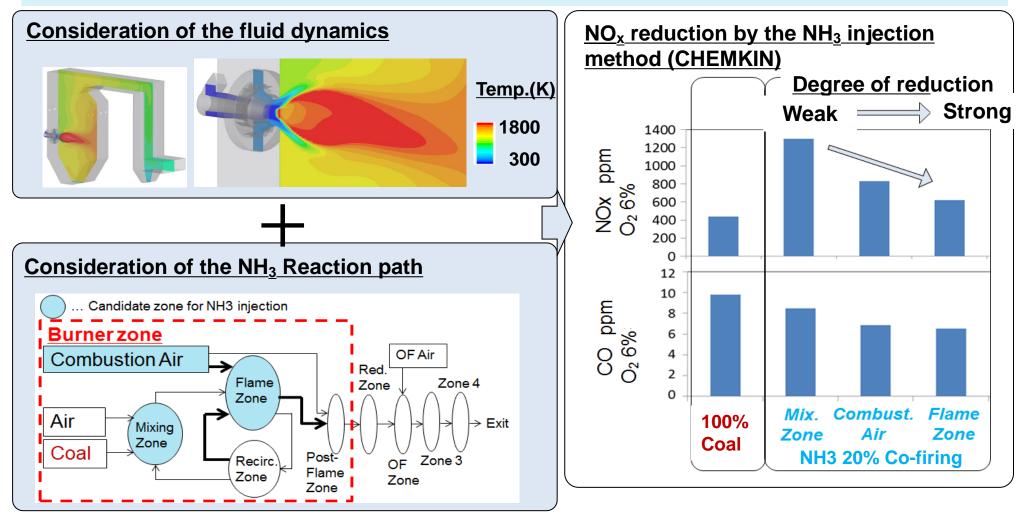
Ammonia co-firing pulverized coal (P.C.) boiler


Task : Optimization of the combustion system for the NOx reduction. Feasibility study to introduce ammonia into the existing power plant


⇒ 2017FY : Co-firing test using 10MW_{thermal} test furnace 2018FY : Trial design to introduce ammonia co-firing system for existing coal fired power plant (1000MW)

IHI

NOx formation in coal and ammonia combustion


NO_x formation in ammonia combustion

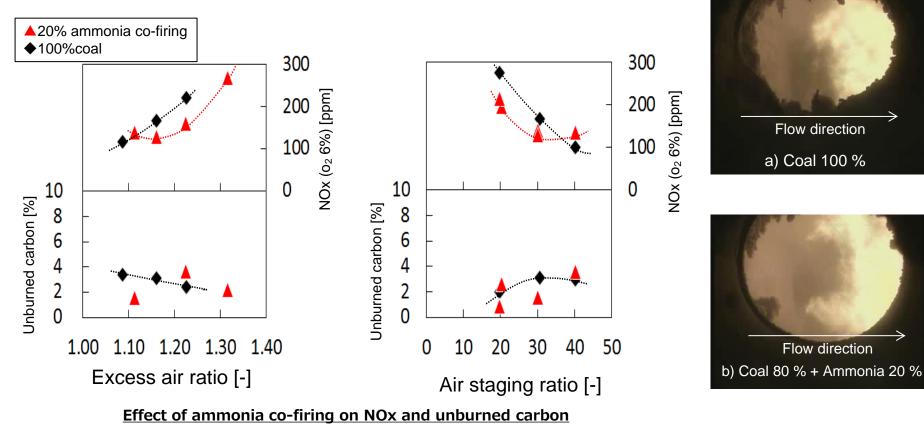
Ammonia oxidation $NH_3 + (5/4)O_2 \rightarrow NO + (3/2) H_2O$ NO reduction by ammonia $NH_3 + NO + (1/4)O_2 \rightarrow N_2 + (3/2) H_2O$ Ammonia $2 NH_3 \rightarrow N_2 + 3 H_2$ decomposition $2 NH_3 \rightarrow N_2 + 3 H_2$

IHI

Approach to control NOx and boiler performance

- > Technical Issue and approaching method:
 - \cdot NO_x reduction by experimental and numerical analysis
 - Boiler performance (amount of the steam generation) by numerical analysis

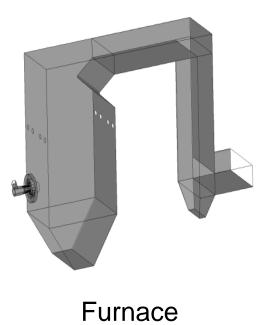
Copyright © 2018 IHI Corporation All Rights Reserved.


IHI

Coal Firing Test Furnace (CFT)

	Armonia Ammonia Reduction of NOx				
Rah Gas recirculation fan Ar av ods air fan draft fan draft fan	Fuel feeding rate	Coal 1.0-1.6 ton/hour Ammonia 0.4 ton/hour			
Ammonia feeding facility	Burner type	IHI-Dual Flow burner,			
	Target	NO below 200 ppm (@ O_2 6% conversion, NH ₃ 20% co-firing)			
Overview A	mmonia tank	Control box Evaporator			

Experimental results: flame stability, NOx


- IHI
- > Stable flame can be achieved by controlling swirl of the secondary air.
- NOx concentration in 20% ammonia co-firing condition is same or under that of 100% coal firing condition.
- > NH₃, N₂O in exhaust gas is under detection limit.

Conditions for the Numerical evaluation

	Coal firing	NH ₃ co-firing
Co-firing ratio of NH ₃ (LHV, %)	0	20.5
Heat input from fuel (MW)	9.5	9.5
Overall excess air ratio	1.22	1.22
Staging air ratio (%)	30.8	30.9

Burner

ToolSoftware: Fluent 15.0Dimension: 3DTurbulent model: k-εChemistry: Eddy DissipationConceptRadiation: DOMesh: around 2 million

Reactions considered in the numerical evaluation

Devolatilization (HCN,NH₃ formation) – Volatile combustion Char oxidation/gasification (Char NO_x formation) –

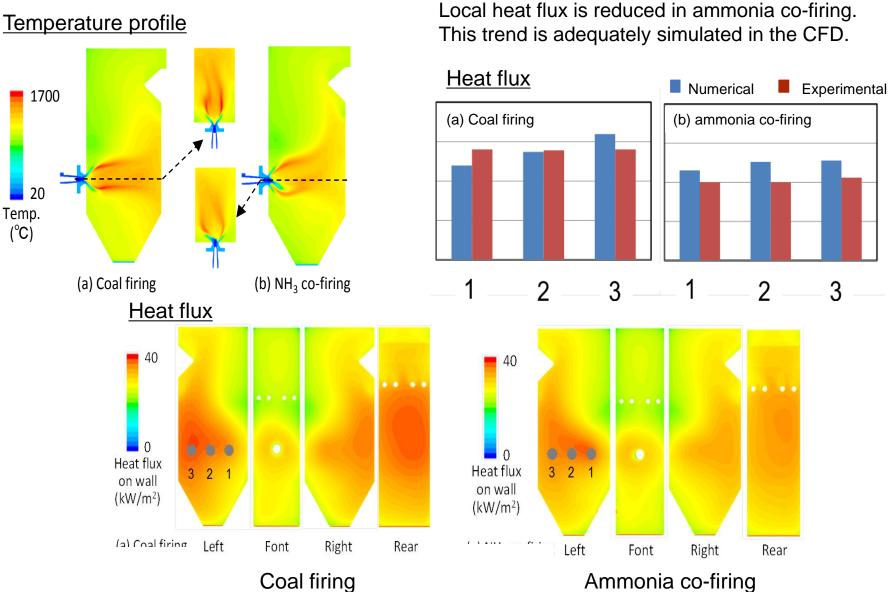
 $\frac{\text{NH}_3 \text{ related reactions}}{\text{NH}_3 + \text{O}_2 \rightarrow \text{NO} + \text{H}_2\text{O} + \text{H}_2} \\ \text{NH}_3 + \text{NO} \rightarrow \text{N}_2 + \text{H}_2\text{O} + \text{H}_2 \\ \text{NH}_3 \rightarrow 1.5\text{N}_2 + 0.5\text{H}_2$

 $\frac{\text{HCN related reactions}}{\text{HCN + O}_2 \rightarrow \text{NO + 0.5H}_2 + \text{CO}}$ $\frac{\text{HCN + NO} \rightarrow \text{N}_2 + 0.5\text{H}_2 + \text{CO}}{\text{HCN + NO} \rightarrow \text{N}_2 + 0.5\text{H}_2 + \text{CO}}$

 $\begin{array}{l} \hline \mbox{Thermal NOx formation} \\ O_2 \rightarrow O + O \\ O + H_2 O \leftrightarrow 2OH \\ O + N_2 \leftrightarrow N + NO \\ N + O_2 \leftrightarrow O + NO \\ N + OH \leftrightarrow H + NO \end{array}$

 $\frac{\text{NOx reduction by char}}{\text{C + NO} \rightarrow 0.5\text{N}_2 + \text{CO}}$

Volatile matter combustion

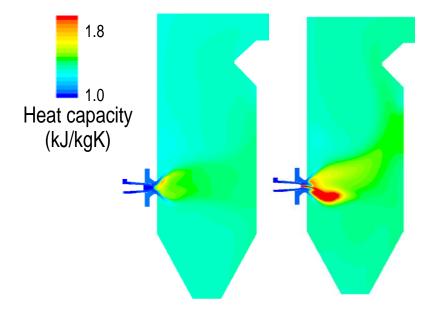

 $\label{eq:Volatile} \begin{array}{l} \overline{\mathsf{Volatile}} \rightarrow \mathsf{tar} + \mathsf{C}_{\mathsf{m}}\mathsf{H}_{\mathsf{n}} + \mathsf{H}_{\mathsf{2}} + \\ \mathrm{CO} + \mathsf{CO}_{\mathsf{2}} + \mathsf{H}_{\mathsf{2}}\mathsf{O} \\ \mathrm{tar} + \mathsf{O}_{\mathsf{2}} \rightarrow \mathsf{CO} + \mathsf{H}_{\mathsf{2}} \\ \mathrm{C}_{\mathsf{m}}\mathsf{H}_{\mathsf{n}} + (\mathsf{m}/\mathsf{2})\mathsf{O}_{\mathsf{2}} \rightarrow \mathsf{mCO} + \\ (\mathsf{n}/\mathsf{2})\mathsf{H}_{\mathsf{2}} \\ \mathrm{C}_{\mathsf{m}}\mathsf{H}_{\mathsf{n}} + \mathsf{mH}_{\mathsf{2}}\mathsf{O} \rightarrow \mathsf{mCO} + \\ (\mathsf{n}/\mathsf{2} + \mathsf{m})\mathsf{H}_{\mathsf{2}} \\ \mathsf{H}_{\mathsf{2}} + \mathsf{0.5O}_{\mathsf{2}} \leftrightarrow \mathsf{H}_{\mathsf{2}}\mathsf{O} \\ \mathrm{CO} + \mathsf{H}_{\mathsf{2}}\mathsf{O} \leftrightarrow \mathsf{CO}_{\mathsf{2}} + \mathsf{H}_{\mathsf{2}} \\ \mathrm{CO} + \mathsf{0.5O}_{\mathsf{2}} \rightarrow \mathsf{CO}_{\mathsf{2}} \end{array}$

 $\frac{\text{Char combusiton}}{C (char) + 0.5O_2 \rightarrow CO} \\ C + H_2O \rightarrow CO + H_2 \\ C + CO_2 \rightarrow 2CO$

	Coal firing		NH ₃ co-firing	
	Exp.	Num.	Exp.	Num.
Heat absorption (MW)	-	7.4	-	7.3
Gas temp. at exit (°C)	1045.0	1051.0	1033.0	1043.0
H ₂ O at exit (vol.%, wet)	-	6.1	-	11.2
CO ₂ at exit (vol.%, 6%O ₂)	13.0	13.6	11.0	10.9
CO at exit (ppm, 6%O ₂)	21.0	1.9	21.0	0.4
NO at exit (ppm, 6%O ₂)	222	214	160	263
Unburned carbon (wt.%)	2.4	2.5	3.7	3.4

Ref. 35th Annual International Pittsburgh coal conference, China, 2018, Oct. 15-18

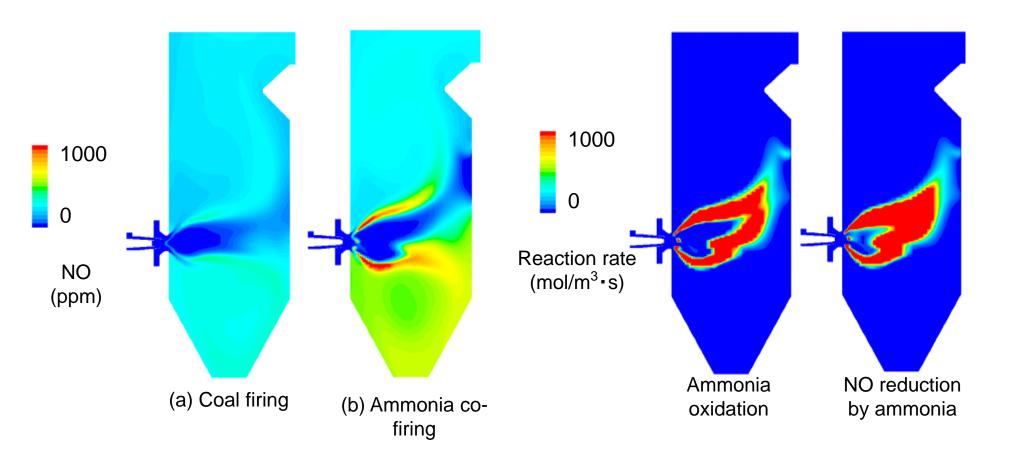
Numerical results



Copyright © 2019 IHI Corporation All Rights Reserved.

Ref. 35th Annual International Pittsburgh coal conference, China, 2018, Oct. 15-18

Numerical results


1000 $\mathbf{0}$ Particle emission (kW/m^3) 1000 0 Incident radiation (kW/m^3)

Reduction of the heat flux on the furnace wall in the ammonia co-firing is induced by the thermal properties related to the heat transfer.

Ref. 35th Annual International Pittsburgh coal conference, China, 2018, Oct. 15-18

Numerical results

Ref. 35th Annual International Pittsburgh coal conference, China, 2018, Oct. 15-18

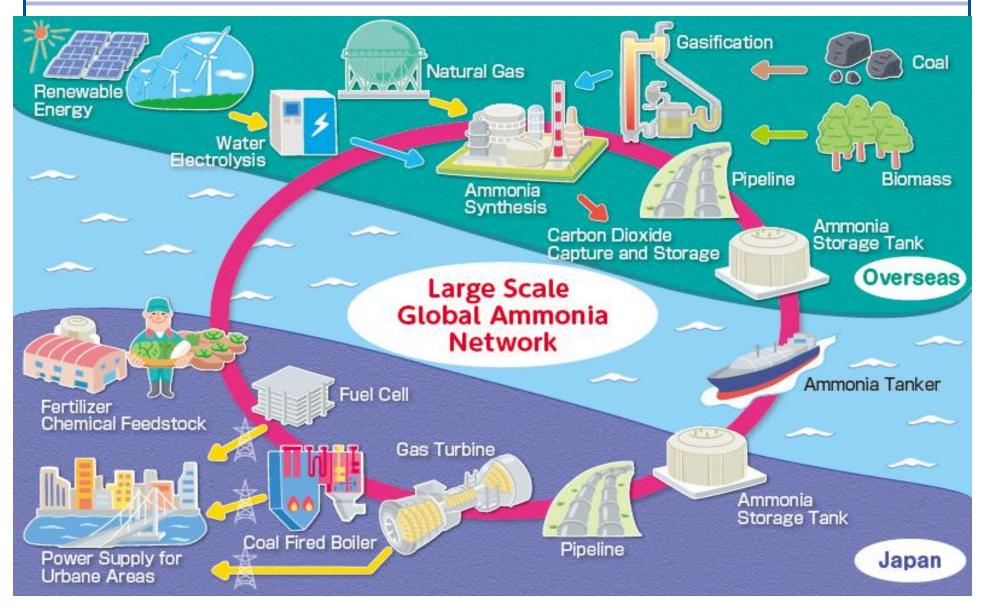
Conclusion

- In this study, injection method of ammonia into the pulverized coal fired boiler was investigated.
- Ammonia is injected into the reduction zone that is created by the coal combustion and the thermal cracking of the ammonia is promoted.
- In some test cases, it was experimentally observed that NO concentration in the ammonia co-firing is lower than that in the coal firing.
- By the numerical study, the reason for it could be seen that some part of the injected ammonia contribute to the denitrification.
- According to this study, it can be mentioned that ammonia can be used as the fuel for the coal fired power plant.

Acknowledgements : This work is supported by the Council for Science Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), "Energy Carrier" (Funding agency : Japan Science and Technology Agency)

New Energy and Industrial Technology Development Organization

(1)Development of ammonia co-firing technology optimized for multi burner in pulverized coal boiler IHI, CRIEPI(Central Research Institute of Electric Power Industry), Osaka Univ.


(2)Development of direct combustion technology of liquefied ammonia for gas turbine IHI, Tohoku Univ., AIST(National Institute of Advanced Industrial Science and Technology)

Establishment & improvement of the technology
 Feasibility study for demonstration

IHI's Carbon free energy network using ammonia

