Yittria-stabilized Zirconia (YSZ) Supports for Low Temperature Ammonia Synthesis

Zhenyu Zhang,¹ Canan Karakaya,² Robert J. Kee,² J. Douglas Way,² and Colin A. Wolden¹

¹Department of Chemical and Biological Engineering

²Department of Mechanical Engineering

Colorado School of Mines, Golden, CO 80401

Overview

Earth • Energy • Environment

Colorado School of Mines

Goal: Distributed green ammonia production

- Approach: Catalytic membrane reactors
- Focus on YSZ motivated by success for ammonia decomposition
- YSZ never investigated
- ZrO₂, rare earth oxides have been effective supports

YSZ supported Ru catalyst

- Catalyst preparation and characterization
- Baseline YSZ support vs. Al₂O₃
- Understand effect of promoters (Cs / Ba / K)
- Characterize performance as a f(T, P, H₂/N₂)
- Develop and validate microkinetic model for design/scale up

AIChE Meeting 11-14-19

Ammonia & Climate Change

Year

The Green Revolution (1960 –) powered by "brown" ammonia Well-correlated to anthropogenic climate change

Goal: Scalable production of "green" ammonia

Year

Graphs from left to right: [1] Sustainable Ammonia Synthesis—Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production; US DOE Office of Science: **2016**.

[2] NOAA, national climate data center; URL: https://www.ncdc.noaa.gov/monitoring-references/fag/indicators.php

Fallacy: Haber-Bosch is inefficient

Earth • Energy • Environment

Colorado School of Mines

State-of-the-Art: ~28 GJ/ton NH₃

- Losses / costs / CO₂ primarily associated with hydrogen production
- Haber-Bosch CapEx intensive, does not scale down
- Renewable H₂ highly distributed

Fallacy: Haber-Bosch is inefficient

Earth • Energy • Environment

Colorado School of Mines

State-of-the-Art: ~28 GJ/ton NH₃

Opportunity for Scalable Production

- Produced @ \$150/ton
- Costs: ~\$450/ton
- Difference shipping

- Losses / costs / CO₂ primarily associated with hydrogen production
- Haber-Bosch CapEx intensive, does not scale down
- Renewable H₂ highly distributed

ARPA-E Concept

Earth • Energy • Environment

 Vision: Develop catalytic membrane reactor (CMR) technology for both efficient hydrogen delivery and distributed production of ammonia

Earth • Energy • Environment

Colorado School of Mines

 Vision: Develop catalytic membrane reactor (CMR) technology for both efficient hydrogen delivery and distributed production of ammonia

Efficient H₂ Generation from NH₃

Earth • Energy • Environment

- T < 450 °C
- >99% conversion
- Exceeds equilibrium
- High purity H₂: >99.5%
- Productivity >0.1 g/h/cm³
- Reduced catalyst loading 10X
- Developed/validated 2D Model

$$r = k_f \left[\left(\frac{P_{NH_3}^2}{P_{H_2}^3} \right)^{\beta} - \frac{P_{N_2}}{K_{eq}} \left(\frac{P_{H_2}^3}{P_{NH_3}^2} \right)^{1-\beta} \right]$$

Colorado School of Mines

$$\frac{\partial(\rho_i u)}{\partial z} = F_c v_i r - F_m W_i J_i$$

$$\nabla (D_i \nabla C_i) = \nu_i k C_{NH_3}$$

Z. Zhang, S. Liguori, T. F. Fuerst, J. D. Way and C. A. Wolden, "Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization", ACS Sustainable Chemistry & Engineering 7, 5975 (2019).

Efficient H₂ Generation from NH₃

Earth • Energy • Environment

- T < 450 °C
- >99% conversion
- Exceeds equilibrium
- High purity H₂: >99.5%
- Productivity >0.1 g/h/cm³
- Reduced catalyst loading 10X
- Developed/validated 2D Model

$$r = k_f \left[\left(\frac{P_{NH_3}^2}{P_{H_2}^3} \right)^{\beta} - \frac{P_{N_2}}{K_{eq}} \left(\frac{P_{H_2}^3}{P_{NH_3}^2} \right)^{1-\beta} \right]$$

$$r = \frac{kKP_{NH_3}}{1 + KP_{NH_3}} = k'P_{NH_3}$$

Z. Zhang, S. Liguori, T. F. Fuerst, J. D. Way and C. A. Wolden, "Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization", *ACS Sustainable Chemistry & Engineering* **7**, 5975 (2019).

$$\frac{\partial(\rho_i u)}{\partial z} = F_c v_i r - F_m W_i J_i$$

$$\nabla (D_i \nabla C_i) = \nu_i k C_{NH_3}$$

Catalyst Preparation & Characterization

Earth • Energy • Environment

- YSZ (Praxair) support: low specific surface area 2.24 m²/g
- Ru loading: 0.4 1.0 wt%
- Good dispersion (3-10 nm)
- Promoters (Cs, K, Ba)

Impact of Support & Promoters

Earth • Energy • Environment

- YSZ \sim 4X > Al₂O₃
- Promoters increase rate ~5 - 10X
- Cs > Ba ~ K
- Insensitive to promoter/Ru Ratio

Transport & Equilibrium Limitations

Earth • Energy • Environment

Colorado School of Mines

Catalyst studies typically done at GHSV $\sim 10,000 \text{ h}^{-1}$ SV $>72,000 \text{ mL g cat h}^{-1}$ or GHSV $> 200,000 \text{ h}^{-1}$

Earth • Energy • Environment

- Cs instantly activated but unstable
- Deactivation thermally activated: Attributed to low melting Cs oxide
- Ba slowly activated but highly stable
- Focus on Ru/Ba/YSZ

Microkinetic Model

Earth • Energy • Environment

Colorado School of Mines

Primary steps in catalytic synthesis of ammonia

G. Ertl

Journal of Vacuum Science & Technology A 1, 1247 (1983);

Fig. 8. Potential energy diagram illustrating the progress of the overall reaction. The activation energy E * depends on surface structure and coverage. Energies in kcal/mol.

- Based on Ertl mechanism
- Innovation: Coverage-dependent activation energies
- Framework generally applicable

Microkinetic Model

Earth • Energy • Environment

Colorado School of Mines

Primary steps in catalytic synthesis of ammonia

G. Ertl

Journal of Vacuum Science & Technology A 1, 1247 (1983);

Fig. 8. Potential energy diagram illustrating the progress of the overall reaction. The activation energy E^* depends on surface structure and coverage. Energies in kcal/mol.

		A	β	E
	Reaction	(cm, s)	ρ	$(kJ \text{ mol}^{-1})$
1	$N_2 + 2(Ru) \rightarrow N(Ru) + N(Ru)$	2.892×10^{-06}	0.000	38.949
	(Sticking coefficient)			
2	$N(Ru) + N(Ru) \rightarrow N_2 + 2(Ru)$	$2.015 \times 10^{+17}$	-0.279	$148.027 - 14 \theta_{N(Ru)}$
3	$H_2 + 2(Ru) \rightarrow H(Ru) + H(Ru)$	4.007×10^{-03}	0.000	0.0
	(Sticking coefficient)			
4	$H(Ru) + H(Ru) \rightarrow H_2 + 2(Ru)$	$3.600 \times 10^{+20}$	0.658	$91.948 - 2 \theta_{\rm H(Ru)}$
5	$\mathrm{NH_3} + (\mathrm{Ru}) \rightarrow \mathrm{NH_3}(\mathrm{Ru})$	1.247×10^{-05}	0.000	0.0
	(Sticking coefficient)			
6	$\mathrm{NH_3(Ru)} ightarrow \mathrm{NH_3} + \mathrm{(Ru)}$	$2.235 \times 10^{+11}$	0.083	83.536
7	$N(Ru) + H(Ru) \rightarrow NH(Ru) + (Ru)$	$8.424 \times 10^{+20}$	0.000	$83.620 - 7 \; \theta_{ m N(Ru)}$
8	$NH(Ru) + (Ru) \rightarrow N(Ru) + H(Ru)$	$6.813 \times 10^{+19}$	0.207	$30.972 - 1 \ \theta_{\rm H(Ru)}$
9	$\mathrm{NH}(\mathrm{Ru}) + \mathrm{H}(\mathrm{Ru}) \to \mathrm{NH}_2(\mathrm{Ru}) + (\mathrm{Ru})$	$4.949 \times 10^{+19}$	0.083	75.236
10	$\mathrm{NH_2(Ru)} + \mathrm{(Ru)} \rightarrow \mathrm{NH(Ru)} + \mathrm{H(Ru)}$	$8.321 \times 10^{+19}$	-0.083	$15.767 - 1 \theta_{\rm H(Ru)}$
11	$NH_2(Ru) + H(Ru) \rightarrow NH_3(Ru) + (Ru)$	$3.886 \times 10^{+19}$	0.083	17.036
12	$\mathrm{NH_3(Ru)} + \mathrm{(Ru)} \rightarrow \mathrm{NH_2(Ru)} + \mathrm{H(Ru)}$	$1.478 \times 10^{+20}$	0.000	$64.980 - 1 \; \theta_{\rm H(Ru)}$

- Based on Ertl mechanism
- Innovation: Coverage-dependent activation energies
- Framework generally applicable

Effect of Pressure, Temperature, and H₂/N₂ Ratio

Earth • Energy • Environment

Colorado School of Mines

Optimal H₂/N₂ ratio

- less than stoichiometric
- Balance between N₂/H₂ adsorption
- Shift to stoichiometric at high T

Pressure dependence

- ~linear at optimal ratio
- Significant rates as low as T = 300°C

Membrane Synthesis

- Low T operation
- Low H₂/N₂ ratios beneficial for separation

Models provide accurate predictions over wide operating conditions

Competition between H₂/N₂ Adsorption

Earth • Energy • Environment

Role of YSZ, Ba: XPS

Earth • Energy • Environment

Colorado School of Mines

Ru 3d position

Metal: 280.2

YSZ: 280.1

YSZ/Ba: 279.8

Peak @275.8 eV

- Ru-Ba Complex?
- Role?

Comparison with Literature

Earth • Energy • Environment Colorado School of Mines

Support/ Promoter	wt. % Ru	T °C	P bar	H ₂ /N ₂	GHSV ml gcat ⁻¹ h ⁻¹	Rate mmol gRu ⁻¹ h ⁻¹	Reference
Pr ₂ O ₃	5	400	10	3	18,000	380	Sato et al. <i>Chem. Sci.</i> , 8:674, 2017
Electride	1.2	400	10	3	18,000	667	Kitano et al., <i>Nature Chem.</i> , 4:934, 2012
La _{0.5} Pr _{0.5} O _{1.75}	5	400	10	3	72,000	1204	Ogura et al., ACS Sus. Chem. Eng., 6:17258, 2018
Pr ₂ O ₃	5	400	10	3	72,000	908	Ogura et al., ACS Sus. Chem. Eng., 6:17258, 2018
BaTiO _{2.51} H _{0.49}	0.86	400	50.1	3	66,000	3349	Tang et al., Adv. Energy Mater., 8:1801772, 2018
BaTiO _{2.51} H _{0.49}	4.3	400	50.1	3	66,000	481	Tang et al., Adv. Energy Mater., 8:1801772, 2018
YSZ/Cs	0.46	400	10.8	3	4,222	372	Zhang et al., Present work
YSZ/Cs	0.46	400	10.8	1	4,222	615	Zhang et al., Present work
YSZ/Ba	1.05	400	10	3	72,000	1410	Zhang et al., Present work

Specific rates highest reported to date for Ru-based catalyst Activation energy (46 kJ/mol) among lowest reported to date Validated coverage-dependent microkinetic model

Z. Zhang, C. Karakaya, R. J. Kee, J. D. Way and C. A. Wolden, "Barium-promoted ruthenium catalysts on yittria-stabilized zirconia supports for ammonia synthesis", *ACS Sustainable Chemistry & Engineering* **2019** *7* (21), 18038-18047

Comparison with Literature

Earth • Energy • Environment Colorado School of Mines

Support/ Promoter	wt. % Ru	T °C	P bar	H ₂ /N ₂	GHSV ml gcat ⁻¹ h ⁻¹	Rate mmol gRu ⁻¹ h ⁻¹	Reference
Pr ₂ O ₃	5	400	10	3	18,000	380	Sato et al. <i>Chem. Sci.</i> , 8:674, 2017
Electride	1.2	400	10	3	18,000	667	Kitano et al., <i>Nature Chem.</i> , 4:934, 2012
La _{0.5} Pr _{0.5} O _{1.75}	5	400	10	3	72,000	1204	Ogura et al., ACS Sus. Chem. Eng., 6:17258, 2018
Pr ₂ O ₃	5	400	10	3	72,000	908	Ogura et al., ACS Sus. Chem. Eng., 6:17258, 2018
BaTiO _{2.51} H _{0.49}	0.86	400	50.1	3	66,000	3349	Tang et al., Adv. Energy Mater., 8:1801772, 2018
BaTiO _{2.51} H _{0.49}	4.3	400	50.1	3	66,000	481	Tang et al., Adv. Energy Mater., 8:1801772, 2018
YSZ/Cs	0.46	400	10.8	3	4,222	372	Zhang et al., Present work
YSZ/Cs	0.46	400	10.8	1	4,222	615	Zhang et al., Present work
YSZ/Ba	1.05	400	10	3	72,000	1410	Zhang et al., Present work

Specific rates highest reported to date for Ru-based catalyst Activation energy (46 kJ/mol) among lowest reported to date Validated coverage-dependent microkinetic model

Z. Zhang, C. Karakaya, R. J. Kee, J. D. Way and C. A. Wolden, "Barium-promoted ruthenium catalysts on yittria-stabilized zirconia supports for ammonia synthesis", *ACS Sustainable Chemistry & Engineering* **2019** *7* (21), 18038-18047

Comparison with Literature

Earth • Energy • Environment Colorado School of Mines

Support/ Promoter	wt. % Ru	T °C	P bar	H ₂ /N ₂	GHSV ml gcat ⁻¹ h ⁻¹	Rate mmol gRu ⁻¹ h ⁻¹	Reference
Pr ₂ O ₃	5	400	10	3	18,000	380	Sato et al. <i>Chem. Sci.</i> , 8:674, 2017
Electride	1.2	400	10	3	18,000	667	Kitano et al., <i>Nature Chem.</i> , 4:934, 2012
La _{0.5} Pr _{0.5} O _{1.75}	5	400	10	3	72,000	1204	Ogura et al., ACS Sus. Chem. Eng., 6:17258, 2018
Pr ₂ O ₃	5	400	10	3	72,000	908	Ogura et al., ACS Sus. Chem. Eng., 6:17258, 2018
BaTiO _{2.51} H _{0.49}	0.86	400	50.1	3	66,000	3349	Tang et al., Adv. Energy Mater., 8:1801772, 2018
BaTiO _{2.51} H _{0.49}	4.3	400	50.1	3	66,000	481	Tang et al., Adv. Energy Mater., 8:1801772, 2018
YSZ/Cs	0.46	400	10.8	3	4,222	372	Zhang et al., Present work
YSZ/Cs	0.46	400	10.8	1	4,222	615	Zhang et al., Present work
YSZ/Ba	1.05	400	10	3	72,000	1410	Zhang et al., Present work

Specific rates highest reported to date for Ru-based catalyst Activation energy (46 kJ/mol) among lowest reported to date Validated coverage-dependent microkinetic model

Z. Zhang, C. Karakaya, R. J. Kee, J. D. Way and C. A. Wolden, "Barium-promoted ruthenium catalysts on yittria-stabilized zirconia supports for ammonia synthesis", *ACS Sustainable Chemistry & Engineering* **2019** *7* (21), 18038-18047

Acknowledgements

Earth • Energy • Environment

Colorado School of Mines

Colleagues

- Drs. Thomas F. Fuerst (INL), Simona Ligouri (WPI)
- Lucy Fitzgerald (UCD), Sarah Livingston (CSM)
- Ryan Gasvoda (CSM)

Funding

- ARPA-E DE-AR0000808
- ARPA-E DE-AR0001004
- NSF CBET-1512172

Earth • Energy • Environment

Colorado School of Mines

AIChE Meeting 11-14-19

Catalytic Membrane Reactor (CMR)

Earth • Energy • Environment

Colorado School of Mines

Challenges with conventional PBMR

- Benefits rather limited
- Limited by poor transport

CMR: Catalyst impregnated in support

- Mitigate internal transport limitations
- Mitigate radial transport limitations
- Eliminate pressure drop, channeling

CMR: Ammonia Synthesis

Earth • Energy • Environment

CMR vs Haber Bosch

- CapEx effective: less use of heat exchanger
- Less compressor: Low H₂/N₂ ratio enables less recycle stream

Ammonia separation along reaction enables:

- Increased synthesis rate: kinetics limited by ammonia adsorption
- Overcome thermodynamic limitations

Reforming step dominates H₂ production cost

Earth • Energy • Environment

Colorado School of Mines

Reforming step (800-900°C, ~30 bar), >67% energy loss in NH₃ production

Earth • Energy • Environment

Colorado School of Mines

XPS spectrum of NaBa₃Ru₂O₁₀

Samata, Hiroaki, Amane Mishiro, Sadamasa Sawada, Yujiro Nagata, Takayuki Uchida, Masahiro Kai, Masao Ohtsuka, and Ming Der Lan. "Crystal growth and properties of new ruthenium oxides." *Journal of Physics and Chemistry of Solids* 59, no. 9 (1998): 1445-1452.

Comparison with Ba-Ru/YSZ

Earth • Energy • Environment

Colorado School of Mines

Ba-Ru/YSZ 2X > Cs-Fe/γ-Alumina

Reaction conditions: 450°C, $H_2/N_2 = 3$

Catalyst	Ea (kJ/mol)
Ba-Ru/YSZ	47.5
Fe-YSZ	68.5
Fe/α-alumina	70.7
Fe/γ-alumina	73.1
Cs0.1-Fe/γ-alumina	44.8
Ba0.1-Fe/γ-alumina	51.7

Reaction conditions: 350 - 450°C, $H_2/N_2 = 3$, P = 10 barg

Cs-Fe/γ-Alumina: Effect of H₂/N₂

Earth • Energy • Environment

Colorado School of Mines

Optimal H₂/N₂ doesn't shift with T

